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Abstract

Hyperspectral data is rich in features that allow accurate identification of a wide

variety of materials, including human skin. The question this research answers is “Can

we develop a skin reflectance model in the visible (VIS) and near infrared (NIR)

portions of the electromagnetic spectrum and use it to develop skin detection and

classification algorithms?” To answer this question, this research is divided into three

parts. First, we describe an engineering model of human skin reflectance in the VIS

and NIR. Second, we model sensor output based on knowledge of the skin reflectance

spectra, incident radiance spectra, and sensor response. Finally, we describe and

demonstrate algorithms for accurate skin detection and skin color estimation from

hyperspectral images.

The skin reflectance model developed in this research is based on data collected

by the scientific community, measurements collected from cadavers and living sub-

jects, and measurements of some of the constituent components of skin. The model

treats skin as a multi-layered material where each layer has a specific absorption and

scattering coefficient based on the materials that make up the layer. The reflectance

and transmittance values of each optical interface and each layer can then be cal-

culated with the Fresnel and Kubelka-Munk equations. All these values are then

used to determine an overall reflectance of skin. Various parameters in the model

such as melanosome level, blood level, and oxygenation level can be adjusted to show

their effect on the skin reflectance spectra. The results of the skin reflectance model

along with illumination by various blackbody radiators are then used as inputs into

a modeled sensor. The selected modeled sensor used in this analysis is a generic

Red-Green-Blue (RGB) sensor. The modeled skin reflectance spectra is also used to

develop the Normalized Difference Skin Index (NDSI) and the Normalized Difference

Green Red Index (NDGRI). These indices are computationally inexpensive and allow
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for the development of skin detection algorithms with a high probability of detection

(PD) and a low probability of false alarm (PFA). The Near Infrared Melanosome

Index (NIMI) is also developed from the skin reflectance model. This index allows for

the development of an algorithm to estimate the reflectance of skin at any point in

the VIS based on reflectance data at two wavelengths (the first between 650nm and

900nm and second at 1080nm).

To test the accuracy of the skin reflectance model, a comparison is made be-

tween measured and modeled data. The average root mean square error across the

VIS and NIR between measured and modeled data for skin from living subjects and

skin from cadavers was 1.12% and 2.43% respectively. The skin reflectance model

then allows us to generate qualitatively accurate responses for an RGB sensor for

different biological and lighting conditions. To test the accuracy of the skin detec-

tion and skin color estimation algorithms, hyperspectral images of a suburban test

scene containing people with various skin colors were collected. The skin detection

algorithm developed in this work had a PD as high as 0.95 with a PFA of 0.006. Skin

reflectances of the subjects in the image were collected with an ASD FieldSpec3r

Spectrometer for comparison with results from the NIMI algorithm applied to the

hyperspectral image. The mean absolute error between data measured by the ASD

FieldSpec3r Spectrometer and data estimated by the NIMI algorithm is 0.026 where

the reflectances of the individuals at 685nm ranged from 0.14 to 0.64.
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A Physical Model of Human Skin

and Its Application for Search and Rescue

I. Introduction

1.1 Introduction

Hyperspectral sensors provide a great deal of spectral granularity and a potential

means for improved detection and classification of select materials [49]. They have

demonstrated an excellent capability for identifying anomalous materials of interest

from airborne platforms over a large geographic area to include geologic and biologic

surface cover. Their use is certainly not limited to applications of physical sciences and

can be extended to a plethora of remote object detections such as aircraft wreckage or a

lost hiker’s exposed skin [85]. In terms of the latter example, current airborne systems

exist that perform search and rescue (SAR) by way of spectral matching [76,89]. The

effectiveness of the SAR application is often in the hands of an operator that requires

a large degree of “operator capability.” It is noted by experts that any hyperspectral

system developed for use in SAR will need to be simple enough to operate for a non

hyperspectral-exploitation expert [81] and allow the user to discriminate small targets

in a large scene [46]. Due to the nature of SAR, near real-time exploitation of the data

is essential for it to be of use [77]. A hyperspectral/multi-spectral system designed to

automatically detect and classify the pigmentation level of human skin can be one of

the components of such a critical system.

One example of an airborne hyperspectral imaging system used in SAR is the

Civil Air Patrol’s Airborne Real-Time Cueing Hyperspectral Enhanced Reconnais-

sance (ARCHER) system [81]. ARCHER is able to search for objects with a specific

spectral signature and send any data of interest to ground stations for further analy-

sis [14]. The current ARCHER system collects data in the spectral range of 500nm-

1100nm, where human skin has a large difference in spectral response based on its
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color. Extending the capability of the system to collect farther into the near-infrared

(NIR) could improve its ability to detect skin since its spectral response in this region

does not vary significantly based on its color.

Face recognition is an active area of research that could benefit from knowledge

of the spectrum of human skin. Many face recognition algorithms depend on the size,

shape, and color of facial features to identify a face [97]. However, performance of these

algorithms is degraded by something as simple as a change in face orientation [63].

Hyperspectral images provide several additional features to aid in face recognition.

For example, the spectral signature of skin on the face provides a pose-invariant

feature for use in these algorithms [62].

Knowledge of skin spectra of the hand has applications in hand and gesture

recognition. Hand and gesture recognition is important for designing new and im-

proved human/computer interfaces [15, 54] and is currently based on the color and

geometry of the hand [11,74]. A hyperspectral image of the hand could provide addi-

tional information, such as whether a pixel is from the palm or the back of the hand,

based on the melanosome level of the skin. Hyperspectral imagery could also identify

specific points on the hand such as melanin spots or veins to assist in determining the

hand’s position.

1.2 Anatomy and color of human skin

Skin is constructed of multiple layers with varying thicknesses and varying opti-

cal properties. A typical cross-section of skin is shown in Fig. 1 where the primary lay-

ers are the epidermis, dermis, and subcutaneous tissue. The epidermis is constructed

of the stratum corneum, stratum lucidum, stratum granulosum, and stratum basale.

The dermis is constructed of the papillary dermis and reticular dermis. Within the

dermis are various blood vessels, nerve endings, and sweat glands, which all affect the

optical properties of the dermis. Below the dermis is a layer of subcutaneous tissue

which includes fat and striated muscle. Each layer of skin is constructed of various
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combinations of water, collagen, blood, melanosomes, and other chromophores such

as bilirubin and betacarotene.

Epidermis

Dermis

Subcutaneous Tissue

Figure 1: Cross-section of thin skin collected from a fair-skinned cadaver.

The thickness of the tissue layers can differ depending on their location on the

body. For example, the dermis of the back is approximately twice as thick as that of

the abdomen. The stratum corneum of the sole of the feet and the palm of the hand

are several times thicker than on any other part of the body. These variations affect

the reflectance of skin, especially in the NIR.

The color of human skin varies from people with an almost white complexion to

those with a black-brown color [57]. Skin color is determined by a number of optical

factors such as the refraction coefficient of the surface of the skin, the absorption coef-

ficients of the skin layers and each layer’s scattering coefficient. Differing amounts of

melanosomes in the epidermis account for the largest difference in skin color. A cor-
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Table 1: Percentage of the epidermis volume occupied by melanosomes [35].

Skin Color Melanosome Percentage (%)

Light-Skinned Adult 1.6 - 6.3

Moderately Pigmented Adult 11 - 16

Darkly Pigmented Adult 18 - 43

Table 2: The Fitzpatrick scale used to describe skin color and its sensitivity to
ultra-violet radiation [51].

Type Color Sun Response

I Very Fair Always Burns

II Fair Usually Burns

III White to Olive Sometimes Burns

IV Brown Rarely Burns

V Dark Brown Very Rarely Burns

VI Black Never Burns

respondence between skin color and the percentage of the epidermis volume occupied

by melanosomes is shown in Table 1.

For clinical purposes, skin can be divided into one of six types according to the

Fitzpatrick Scale (Table 2). This scale is used to describe skin color and its sensitivity

to ultra violet radiation [93]. A connection can be made between the melanosome level

in the epidermis and the Fitzpatrick skin type based on the description of skin color

in Table 1 and Table 2. (This connection is used in describing skin based on our

estimates of the melanin in Section 4.7.)

Differing amounts of hemoglobin, bilirubin, and betacarotene in skin can also

account for a large difference in skin color. An increase in dermal blood level causes

skin to take on a ruddy color while a decrease causes skin to take on a paler color [67].

Increased amounts of bilirubin or betacarotene in skin cause it to take on a yellow or

yellow/orange tint, respectively [45].
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1.3 General approaches to modeling multi-layered materials

Existing models of human skin can be categorized as: 1) Monte-Carlo models,

2) diffusion theory models, and 3) Kubelka-Munk theory models [8]. Each model has

its advantages and disadvantages in terms of modeling skin reflectance. Monte-Carlo

models have the potential to calculate a highly accurate reflectance. However, the

accuracy of these methods for estimating reflectance is limited by the accuracy of the

model’s representation of the structure of the material. In addition, these models are

computationally intensive.

Diffusion theory models are a class of model that exhibit reduced complexity

compared to Monte-Carlo models, yet appear to have similar capability. Diffusion

theory takes into consideration the absorption and scattering properties of the differ-

ent layers of a material and uses boundary conditions and differential equations to

determine the amount of reflected light.

The model with the lowest level of complexity discussed in this dissertation

uses Kubelka-Munk theory. Kubelka-Munk theory is a simplified version of diffusion

theory that assumes there is no reflection at the boundaries of the different tissue

layers and assumes layers are semi-infinite slabs. Models based on the Kubelka-Munk

theory are less accurate than those based on diffusion theory or Monte-Carlo theory.

However, Kubelka-Munk models are not as computationally intensive.

1.3.1 Monte-Carlo reflectance models. Monte-Carlo methods are based on

following the path of photons randomly scattered and absorbed in different layers of

material. A photon traveling with a specific wavelength is modeled as having entered

the material. After the photon travels a short distance, it has a probability of being

absorbed, scattered, or continuing to travel in its current direction. The probability

of being absorbed or scattered is based on the wavelength of the photon and the

distance the photon travels.

The distance increment of the photon path for each iteration of the model is a

small fraction of the thickness of the material layer through which it is traveling. If
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the photon is absorbed, the simulation of the photon’s path is ended. If the photon

is scattered, the direction of the path of the photon is changed. The new path of

the photon can be in any direction. The probability a specific direction is selected is

based on the scattering profile of the material layer.

If the photon is neither absorbed nor scattered, it will continue in its current

direction. The photon continues to travel until it is either absorbed in the material,

transmitted through the material in a specific direction, or reflected back out of the

material in a specific direction.

This process is continued with multiple photons to determine what percentage of

photons are reflected back out of the skin. This method is computationally intensive

since a large number of photons traveling at different wavelengths needs to be modeled

to obtain accurate results. Furthermore, if one is estimating diffuse reflectance, the

additional cost of calculating the direction of the reflected or transmitted photons is

unnecessary and computationally expensive.

1.3.2 Diffusion theory reflectance models. The propagation of light through

a turbid (semi-opaque) media, such as skin, can be described using diffusion the-

ory [8]. Diffusion theory is based on a differential equation derived from the full

Boltzmann transport equation [31]. It assumes one of two things happen to light

traveling through a layer: light can be isotropically scattered or it can continue trav-

eling in its current direction. This theory is practical for modeling light traveling

through a highly scattering media [31]. For the modeling of skin reflectance in the

visible (VIS) region of the spectrum, the condition of scattering events being more

likely than absorption events is easily met. However, in the NIR, water and lipid

absorption begins to dominate over scattering events making diffusion theory a poor

choice for this portion of the spectrum [8].

1.3.3 Kubelka-Munk theory reflectance models. The Kubelka-Munk theory

assumes light incident on a layer is either absorbed within the layer, isotropically
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scattered within the layer, or transmitted through the layer. Based on the absorption

coefficient, scattering coefficient, and thickness of a particular layer, the amount of

light reflected or transmitted through the layer can be determined. The reflectance

and transmittance of each layer are incorporated into a multi-layer model that gives

an estimate of the material’s reflectance. An example of a skin reflectance model

based on Kubelka-Munk theory is the model proposed by Dawson et al. [16].

Using the depth, reflectance, and transmittance of the layer of material, Kubelka-

Munk theory was further used to calculate the absorption and reduced scattering co-

efficient of skin [5]. Furthermore, the simplicity of Kubelka-Munk skin models allows

for quick computation of estimated skin reflectance [8].

1.4 Remote sensing of skin

A group of subjects is presented in Fig. 2 with a variety of pigmentation levels

that cover the range of Type II to Type VI skin. Ambient lighting conditions can

significantly change the apparent color of skin [3], which makes determining skin

pigmentation levels a challenging problem. This phenomenon is demonstrated in

Fig. 2 where shadowing on the necks makes the corresponding skin appear darker,

which demonstrates the difficulty of designing an algorithm that will detect skin and

classify its pigmentation level over a full range of illumination levels.

1.4.1 Skin detection in color imagery. Detection of human skin in color

imagery can be difficult because many materials have a color similar to one of the

many shades of skin. Skin detection methods with color imagery vary from a ratio of

color-space channels to more sophisticated machine learning mechanisms such as the

self-organizing map (SOM) [92]. Regardless of the methodology used, the end result is

often a high probability of detection (PD), typically above 90%, with an unfortunate

high probability of false alarm (PFA) [9], often on the order of 15%.

Color-space channel skin detection methods typically use two color channels.

For example, the full range of skin colors has a red to green ratio greater than one,
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Figure 2: Color image of a group of subjects with different skin pigmentations
under solar illumination in a suburban environment.

red to blue ratio greater than one, and a green to blue ratio greater than one [9].

These methods produce a significant number of false alarms, and some authors have

attempted to mediate this issue with a rules-based approach combining ratios, color-

space channel thresholds, and color-space channel differences [65,92] to maintain the

high PD rates while reducing PFA rates. These approaches essentially define a volume

(Voronoi tessellation) of the three-dimensional color-space which encompasses possible

skin colors. Other methods reduce false alarms by examining how skin pixels cluster

spatially and then attempt to determine if the spatial clustering resembles a part of

the body such as a limb [25] or a face [30].

The red-green-blue (RGB) color space is most common in the literature, but

may not be ideal for the skin detection task. The disadvantages of the RGB color

space is the strong correlation between the channels [92]. Other color-spaces such

as hue-saturation-value, hue-saturation-lightness, tint-saturation-luminance, luma-

chroma red difference, and chroma blue difference, separate luminance (intensity)

and chrominance (hue) which results in a better clustering of skin-colored pixels in

the selected color-space [27]. Although, the selection of a color-space may allow for

a simpler or more intuitive algorithm, it has been shown by others that there is no
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optimum three channel color-space for skin detection if the optimal skin detector for

that color-space is used [3].

Other skin detection methods use three-channel color-space examples as a train-

ing set to train a classification system to classify an unknown quantity as skin or not

skin. In some cases, pixels are projected onto a plane within the color-space that

provides the furthest separation between skin pixels and non-skin pixels [9]. This

technique in particular provides a slight improvement over the ratio-based methods.

Some statistical-based approaches analyze training images for the probability

of skin occurring given a pixel in the image, the probability of a skin color occurring

given a pixel is skin, and the probability of a skin color occurring in an image over-

all. From these quantities, the probability a pixel is skin given a specific skin color

is calculated from the training images [9]. This general approach is susceptible to

the “data problem” – there is not enough training and testing images under various

operating conditions to compute these quantities accurately. These methods may be

particularly susceptible to the data sets available, and hence, the results of the system

are often questionable. Several other methods have been attempted for skin detec-

tion in images with limited success: self organizing maps, Gaussian mixture models,

and various clustering algorithms. They all appear to have similar performance to

the statistical approach described previously, but tend to be less computationally

intensive.

1.4.2 Detection of skin in near-infrared imagery. The same optical param-

eters that affect the color of human skin also affect skin’s reflectance in the NIR

region of the electromagnetic spectrum. Analysis of skin’s optical parameters results

in elegant and computationally efficient detection and pigmentation estimation algo-

rithms. Skin has a high reflectance between 800-1100nm and a low reflectance beyond

1400nm. This observation has been noted by others and exploited, although they have

not yet publicly documented their degrees of success. For example, skin detection us-

ing two NIR channels has been accomplished for the purpose of counting occupants
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in a vehicle [64] and for face detection [19]. Both of these methods use bands that

are several hundred nanometers wide in the NIR, which, depending on the operating

environment, likely result in a higher PFA than if these regions were narrower. The

most notable work, and that referenced by [64], is presented in [40].

The work in [40] exploits the absorption and reflective properties of skin, and and

operates in the range of 800-1400nm for the lower wavelengths and 1400-2500nm for

the upper wavelengths. Although not explicitly shown, the authors describe a scaled

distance between the upper and lower wavelengths and threshold that scaled distance

to declare the presence or absence of human skin. Our work uses a similar detection

scheme we call the normalized difference skin index (NDSI) [58] (motivated by the

normalized difference vegetation index [22]) that carefully chooses narrow spectral

bands of interest due both to the spectral properties of skin as well as the known

solar illumination source. We further incorporate additional spectral information to

help reduce false alarm sources in the natural and urban environments yielding robust

detectors.

Our current work extends that described in [40] in the following ways. First,

it explains the physiology of human skin and how it relates to hyperspectral human

skin modeling that leads to our skin detection algorithm. In doing so, our work

refines the broad ranges described in [40] to more refined spectral components based

specifically on solar illumination and the optical properties of skin tissue. Second, it

extends the skin detection capability to arbitrary environments in the remote setting

by incorporating additional spectral information into the detector thus reducing false

alarms. Third, our work further estimates the melanin content of detected skin.

Finally, our work has a correspondence based on our optical model of human skin

in [59], which provides a sound theoretical mapping from image acquisition to skin

detection and melanin estimation not described in other literature.
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1.5 Research question

The previous sections lead to the following critical question: “Can we develop

an engineering model of skin reflectance in the VIS and NIR and use it to develop

algorithms to assist in the detection and classification of human skin?” An engineering

model of skin reflectance can show how the constituent components of skin interact

with light to create a range of characteristic features that can be exploited for remote

sensing and classification applications. These features can then be used to detect

people in hyperspectral images and identify different properties such as melanosome

level. In all cases, we show that the answer is yes.

1.6 Organization of dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides

an in-depth description of a skin reflectance model based on the Kubelka-Munk equa-

tions. This includes a description of the optical coefficients used by the model and

how adjusting the various parameters affect model results. A comparison is made

between modeled and measured results for living people and cadavers. Chapter 3

discusses how hyperspectral reflectance data, along with radiance data and a sensor

response, can be combined to determine sensor output. To demonstrate the effect on

a generic color (RGB) sensor, the combination of skin reflectance and illumination

source is applied to an avatar to produce a color image. Chapter 4 presents the skin

detection and melanosome level estimation algorithms for use with remotely sensed

hyperspectral data. Results of applying these algorithms to a suburban scene con-

taining people with a variety of pigmentation levels and various skin color confusers

is presented. Chapter 5 discusses current and future efforts based on the development

of this research. This includes the development of a camera system for real-time skin

detection and melanosome level classification. We conclude by offering recommended

improvements to the model and skin detection algorithm as well as the addition of

detection/classification algorithms.
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II. Physics-Based Human Skin Reflectance Model

2.1 Introduction

In this chapter, we propose a novel engineering model of human skin reflectance

in the visible (VIS) and near-infrared (NIR) portions of the electromagnetic spec-

trum. This model is a hybrid of that presented by Matcher and Meglinski [52], but

uses optical equations to simplify and speed up model output. The model uses optical

parameters from the literature [12, 26, 35, 60, 69] and incorporates real measurements

from samples extracted from cadavers as well as spectral measurements from living

subjects. Our contributions to the field are two-fold. First is a newly computed

reduced scattering coefficient for the dermis and epidermis based on reflectance mea-

surements from cadavers and living people. Second is a high fidelity skin reflectance

model which compares favorably with measured skin reflectance data, a stark im-

provement over existing models [16,52].

In order to better understand how skin’s chromophores effect the overall re-

flectance, we seek an accurate model that allows us to tune the parameters. In the

following discussion of modeling, we will specifically discuss reflectance models, skin

models, and skin reflectance models. A skin model refers to a description of skin as

multiple layers. Each of these layers has specific optical properties depending on its

thickness and tissue makeup. A reflectance model describes a method of modeling the

reflectance of a multi-layer material based on the knowledge of each layer’s thickness

and the optical properties of the constituent components. A skin reflectance model

is a combination of a specific reflectance model with a specific skin model. The skin

reflectance model created for this work treats skin as having a Lambertian and spec-

ular component. The specular component of skin can have a large variation due to

the position of the light source, skin and sensor relative to each other. However, for

this work, we model the light source and sensor as being normal to skin. This allows

us to use the Fresnel equations described in Section 2.2.2 to estimate the amount of

specular reflection.
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The remainder of this chapter is arranged as follows. The anatomy of human

skin is presented and several previously developed models of skin reflectance are de-

scribed, including the multi-layer skin reflectance approach [16, 45, 52]. The optical

properties of the components of skin used by several existing skin reflectance mod-

els are described [35, 43, 71]. The results from the multi-layer skin reflectance model

developed in this work and the effect of adjusting various optical parameters on the

model are then explored. Next, we compare the skin reflectance model developed in

this work with results from existing models [35, 72] and measured reflectance data

from living subjects and cadavers. Finally, we list conclusions and describe the future

work necessary to improve the skin reflectance model.

2.2 Kubelka-Munk theory reflectance model

The Kubelka-Munk equations describe transmission (tn) and reflection (rn) of

light at a specific wavelength in a homogenous layer of material with constant thick-

ness. This layer both absorbs and scatters light where the transmission and reflection

of the nth layer is described in Eqn. (1) and Eqn. (2) as:

tn(λ) =
4βn(λ)

(1 + βn(λ))2eKn(λ)dn − (1− βn(λ))2e−Kn(λ)dn
, (1)

rn(λ) =
(1− βn(λ)2)(eKn(λ)dn − e−Kn(λ)dn)

(1 + βn(λ))2eKn(λ)dn − (1− βn(λ))2e−Kn(λ)dn
, (2)

where

βn(λ) =
√

An(λ)/(An(λ) + 2S ′n(λ)), (3)
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Kn(λ) = 2
√

An(λ)(An(λ) + 2S ′n(λ)), (4)

dn is the thickness of the material [16], and λ indicates the dependency on wavelength.

The coefficients An(λ) and S ′n(λ) in Eqn. (3) and Eqn. (4) are related to the absorption

and scattering coefficients (an(λ) and s′(λ) respectively) by Eqns. (5) and (6) [13] as:

An(λ) =
an(λ)

1
2

+ 1
4

(
1− s′n(λ)

(s′n(λ)+an(λ))

) , (5)

Sn(λ) =
sn(λ)

4
3

+ 38
45

(
1− s′n(λ)

(s′n(λ)+an(λ))

) . (6)

2.2.1 Kubelka-Munk multi-layer reflectance model. Human skin consists

of multiple layers of tissues with unique optical properties. The reflectance of skin

depends on many factors, including the light source and skin’s structure [30,43,63,79,

83]. The multi-layer skin reflectance model is a physics-based model which describes

the reflectance spectra of skin. An anatomy of normal human skin describes four

layers: stratum corneum, epidermis, dermis, and subcutaneous tissue. As described

earlier (see Section. 1.2), the epidermis and dermis can each be further divided into

different layers.

In the model proposed by Meglinski and Matcher, the epidermis is described

as the stratum corneum and living epidermis [52]. The dermis is described as the

papillary dermis, upper blood net dermis, dermis, and deep blood net dermis [52].

We note that the Meglinski and Matcher model attempts to capture the anatomy of

skin in a descriptive engineering model.
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2.2.2 A generic N-layer model structure. By identifying the thickness of

each tissue layer and its optical properties, a skin reflectance model can be created.

One simplifying assumption made for the model is that the light incident on the skin is

normal to the skin’s surface (as stated earlier, skin is not completely Lambertian as can

be seen in existing bidirectional reflectance distribution function measurements [50]).

The Fresnel equation describes the amount of reflection for light at normal incidence

at the interface between two materials with indices of refraction η1 and η2 [28] and is

computed as:

F =

(
η2 − η1

η2 + η1

)2

, (7)

where η1 is the index of refraction of air while η2 is the index of refraction of the

stratum corneum. Although light at angles other than normal incidence will have in-

creased amounts of Fresnel reflection [28], this is outside the scope of this work. Using

the Kubelka-Munk equations (Eqns. (1), (2), (3), and (4)), the optical properties and

thickness of each tissue layer, one can calculate the reflected and transmitted light

energy.

In order to apply the Kubelka-Munk and Fresnel equations, some simplifying

assumptions need to be made. First, we assume skin is a Lambertian (constant bidi-

rectional reflection distribution function) surface with a specular component [42]. For

this work, the specular component is due to Fresnel reflection from light perpendic-

ularly incident on the skin [5, 43]. Second, we assume skin is constructed of a finite

number of layers. The model describes skin as layers with similar optical properties

and assumes there is an instantaneous transformation of their optical properties from

one layer to the next. Third, we assume each tissue layer has a constant thickness.

Finally, we assume that each layer is homogenous in terms of its absorption and scat-

tering coefficients. Although the layers of skin are not of constant thickness and are
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not necessarily homogenous, these assumptions are necessary for making the model

tractable.

Consider the generic model in Fig. 3, where the surface of a multi-layered mate-

rial is illuminated with unit energy and the arrows indicate the paths of light within

each layer. For a given layer, light is either absorbed, scattered out the top of the

layer, scattered out of the bottom of the layer, or continues on its path (without

scattering) through the bottom of the layer. The fraction of light reflected off the

material is the sum of the fractions of light for each path exiting the material, includ-

ing the Fresnel reflectance. The fraction of light for each of the exiting paths can be

estimated as the product of the Fresnel transmittance, the transmittance of all the

layers it travels through to reach the path’s final layer, the reflectance of the path’s

final layer, the transmittance of the layers it travels through to return to the surface

of the material, and the Fresnel transmittance. For example, the fraction of light

represented by V3 in Fig. 3 is the product of the Fresnel transmittance, transmittance

of layer 1, transmittance of layer 2, reflectance of layer 3, transmittance of layer 2,

transmittance of layer 1, and the Fresnel transmittance. The total transmittance to

layer 3 is the same as the total transmittance for the return path out the surface of

the material. However, we describe all transmittances in the order they occur for

completeness.

The limitation to this approach is that it does not consider all possible paths

light may take when it travels through a pair of interfaces. For example, in existing

approaches it is assumed that, for a pair of interfaces, the transmittance is the product

of the transmittance of the two interfaces. It is also assumed the reflectance is the

sum of the reflectance of the first layer and the product of the transmittance of the

first interface and the reflectance of the second interface. The fact that light may

reflect multiple times between the two interfaces before it exits one of the interfaces,

is often ignored.
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Figure 3: Multi-layer skin reflectance model based on Fresnel reflection and trans-
mission, Kubelka-Munk reflection and transmission, and reflection of subcutaneous
tissue. The arrows depict light traveling through optical interfaces and not a specific
direction for the light’s path.

Figure 4 shows an example of the possible paths light may take between in-

terfaces 0 and 1 and the resulting transmittance and reflectance for the combined

interfaces. The total reflectance of the two interfaces is the sum of all reflectance

paths as described by:

R1 = r0 + t20r1

∞∑
m=0

(r0r1)
m (8)

while the total transmittance is the sum of all transmittance paths as described by:

T1 = t0t1

∞∑
m=0

(r0r1)
m. (9)
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For these equations, rn and tn are the reflectance and transmittance of the nth op-

tical interface. An optical interface is defined as a point in the skin model where

Fresnel reflectance and transmittance occurs or where Kubelka-Munk reflectance and

transmittance occurs.

r0

t r0 1
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t r0 1 0
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Interface 0
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Figure 4: Fractions of reflectance and transmittance for possible paths of light for
model interfaces 0 and 1.

The calculation of R1 and T1 allows us to begin the process of calculating Rn+1

and Tn+1 which are defined as the total reflectance and total transmittance (respec-

tively) of optical interfaces 1 through n + 1. This is done iteratively, where the

calculations of Rn+1 and Tn+1 are dependent on Rn and Tn as:

Rn+1 = Rn + T 2
nrn+1

∞∑
m=0

(Rnrn+1)
m and (10)

Tn+1 = Tntn+1

∞∑
m=0

(Rnrn+1)
m. (11)

The infinite sums in Eqns. (10) and (11) are of the form
∑∞

i=0 ai which converges to

1/(1 − a) if a < 1. Since (Rn, Rn+1) < 1 and none of the interfaces analyzed in this

work are 100% reflective, Eqns. (10) and (11) respectively converge to:
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Rn+1 = Rn +
T 2

nrn+1

1− rn+1Rn

and (12)

Tn+1 =
T 2

ntn+1

1− rn+1Rn

. (13)

2.2.3 Process for generating spectra. To calculate the total reflectance and

transmittance in a multi-layer model, one needs to take an iterative approach with

Eqn. (12) and Eqn. (13). First, calculate the Fresnel reflection of the top layer where

R0 is the Fresnel reflection and T0 = 1 − R0. Second, calculate the reflectance and

transmittance of each of the layers using the Kubelka-Munk equations (Eqn. (1) and

Eqn. (2) respectively). Third, determine R1 and T1 based on r1, t1, R0, and T0. The

values of R1 and T1 are the total reflectance and transmittance of the interfaces 0 and

1 in the multi-layer model. The values of R1, T1, r2, and t2 are then used to calculate

R2 and T2, which are the total reflectance and total transmittance of interfaces 0, 1,

and 2. This procedure continues until one reaches the final layer N . At that point,

one can calculate the total reflectance and transmittance of all the layers, RN and

TN .

The final element of the skin reflectance model is the reflectance of subcutaneous

tissue. Although one can model the absorption, scattering, and reflectance properties

of subcutaneous fat and possibly the striated muscle beneath, it is beyond the scope

of this dissertation and is recommended for future work. Instead, we use reflectance

measurements of subcutaneous tissue as layer N + 1. This approach is reasonable

since subcutaneous fat is often significantly thicker than skin and can be considered

an infinite slab where light is only reflected at the interface and any light entering the

tissue is entirely absorbed. To determine the reflectance of skin over subcutaneous
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Table 3: ASD FieldSpec3r Spectrometer Parameters [4].

Parameter Value

Spectral Range 350 - 2500 nm

Spectral Resolution 3 nm at 700 nm

10 nm at 1400 nm

10 nm at 2100 nm

Sampling Interval 1.4 nm at 350 - 1050 nm

2 nm at 1000 - 2500 nm

tissue, one needs to calculate RN+1 using Eqn. (12) and Eqn. (13) where rn+1 is the

reflectance of the subcutaneous tissue.

2.3 Data and tissue collection

In order to accomplish the research goals discussed earlier, several data col-

lections were necessary from both living subjects and cadavers. These included re-

flectance measurements from both and included the collection of skin samples from

cadavers. Reflectance measurements were collected with the Analytical Spectral De-

vices (ASD) FieldSpecr 3 Spectrometer. The ASD FieldSpec3r Spectrometer con-

sists of a hand-held contact probe connected to a spectrometer with a fiber optic

cable. The probe contains its own illumination source which covers the VIS and

NIR. The system is calibrated by placing the probe with its illumination source on

against a calibrated reflectance panel with a known reflectance. The amount of light

received by the spectrometer at a specific wavelength can then be associated with the

reflectance of a material at that same wavelength. Once the system is calibrated, the

contact probe is placed against materials such as skin and the material’s reflectance

for different wavelengths in the VIS and NIR can be collected. The spectral range

and resolution of the system is shown in Table 3.

2.3.1 Collection from living subjects. Our first set of data collections con-

sisted of reflectance measurements from volunteers with various levels of pigmentation.
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Because this part of the data collection deals with living human subjects, we obtained

permission from the AFIT Institutional Review Board (IRB) to conduct our experi-

ments (see Appendix A for a copy of the exemption letter from the AFIT IRB). The

approved collection form is shown in Fig. 5.

Figure 5: Volunteer collection form.

Skin reflectance measurements of the volunteers were collected with an ASD

FieldSpec3r Spectrometer, which shines a low-powered (less than 10W) white light

from a contact probe onto the object of interest and measures the amount of light

reflected off that object. Reflectance measurements were collected from the forearm

of each subject. This area was selected since it does not have a significant amount of

hair, which allows for near pure skin reflectance measurements.
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2.3.2 Collection from cadavers. A consistent procedure was used to col-

lect data from each cadaver. Permission from the Director of the Anatomical Gift

Program, Boonshoft School of Medicine, Wright State University was obtained to

perform the described analysis (see Appendix A). Several sites on the cadaver were

chosen for analysis. Each site was photographed with a standard digital camera, had

a reflectance measurement collected with the ASD FieldSpec3r Spectrometer, and

had tissue samples extracted from the site. The procedures used for each step is

documented in the following paragraphs.

All procedures were documented on a form (Fig. 6) that listed all pertinent

information about the data collection. The form allows for the selection of one to six

sights on the cadaver for analysis.

Using the same ASD FieldSpec3r Spectrometer used on the living subjects,

reflectance measurements were collected from multiple points on several cadavers.

Following the reflectance measurements, skin tissue samples were collected from the

same points on each of the cadavers using a 4mm disposable skin biopsy punch. The

skin samples were then placed in individually marked cassettes and placed in contain-

ers of 10% neutral buffered formalin. Analysis of the skin samples was conducted by

a staff pathologist, Department of Pathology, 88th Medical Group, Wright-Patterson

AFB, Ohio. The analysis consisted of tissue preparation, determination of the thick-

ness of the various layers of the skin, a clinical assessment of the melanin content,

and a high-resolution color photograph of the tissue samples so they may be analyzed

using image processing techniques at a later juncture.

2.4 Optical properties of skin components

One factor that simplifies the modeling of skin is that the dermal optical prop-

erties are essentially the same for different people. The same is true for the epidermis

where the most notable exception is melanosome level [82]. The calculation of the

reflectance and transmittance for the Kubelka-Munk equations for an arbitrary layer

n are based on the absorption and scattering coefficients of the skin components (an
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Figure 6: Cadaver collection form.

and s′n respectively). These are assumed constant across models, except for differing

amounts and at different tissue depths. The main absorbers in skin in the VIS are

melanosomes, collagen, and hemoglobin [2,25,80] while the main absorber in the NIR

is water [72]. Melanosomes exist primarily in the epidermis while hemoglobin exists

primarily in the dermis. Water exists in all layers to varying degrees.

2.4.1 Index of refraction. Although the indices of refraction are wavelength

dependent, an approximation is made that they are constant across the VIS and NIR.

When considering the basic anatomical view of human skin, the only significant index

of refraction exists between air/stratum corneum interface. These indices of refraction
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are 1.0 and 1.5 respectively. The index of refraction between the stratum corneum,

epidermis, and dermis are nearly identical (1.5, 1.34, 1.40 respectively) [53] and are

safely ignored here and later when we present an engineering model of skin anatomy

in Section 2.5.

2.4.2 Absorption coefficients.

2.4.2.1 Water. Water is skin’s main constituent. Its absorption is

insignificant in the VIS, but has several significant absorption features in the NIR.

The absorption of water (shown in Fig. 7) in the VIS is defined in [61] and in the NIR

is defined in [12].
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Figure 7: Water absorbtion in the visible (VIS) [61] and near-infrared (NIR) [12].
Dashed line delineates data from [61] and [12].

2.4.2.2 Collagen. While water makes up the majority of the dermis,

the next most plentiful material in the dermis is collagen at 15-30% of skin’s volume.

Absorption measurements of collagen were derived in this dissertation by measuring

the transmittance of sheets of clear gelatin, which consist of 100% collagenous pro-

tein. These measurements were conducted with the ASD FieldSpec3r Spectrometer
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and ASD Leaf Clip. The ASD Leaf Clip connects to the hand-held probe on the

spectrometer in such a way that a white-panel rest flush against the probe. A cal-

ibration measurement is collected to determine the amount of light from the probe

that reflects off the panel and is received by the fiber optic cable in the probe. The

thickness of a gelatin sheet is measured with a micrometer and then inserted between

the probe and the leaf clip’s white panel. A measurement of light returning to the

probe with the gelatin between the probe and panel is collected. Part of the light

transmits through the gelatin sheet, reflects off the white panel, transmits through

the gelatin sheet again, and returns to the probe. The rest of the light is absorbed

by the gelatin sheet. Since the path length through the gelatin is known (twice the

thickness of the gelatin sheet since it travels through the sheet twice) and the frac-

tion of light absorbed by the gelatin sheet is now known, the absorption coefficient

of the gelatin can then be calculated using the Kubelka-Munk equations. The use of

the Kubelka-Munk equations is based on the assumption that the scattering by the

gelatin is insignificant when compared with its absorption. A similar assumption was

made in [90] which calculated the absorption coefficient of gelatin in a similar manner.

Absorption results for the gelatin sheet are shown in Fig. 8.

Assuming the dermis and epidermis are a combination of collagen and water, a

comparison is made between measurements of dermis and epidermis absorption mea-

sured by others. Figure 9 shows the dermis and epidermis absorption coefficients

developed in this dissertation, measured by Saidi et al. [71], and measured by Salo-

matina et al. [72]. The results measured by Saidi et al. were collected from bloodless

dermis sample from neonatal skin [71]. The results measured by Salomatina et al.

were measured from abdominal skin from fair-skinned adults (Caucasians) [72]. The

results presented in this work are a summation of the absorption of 70% water and

30% collagen for the dermis and a summation of the absorption of 20% water and

80% collagen for the epidermis as documented by Meglinski and Matcher [52].

In the VIS, there is a wide variation in values for the absorption coefficient

found in the literature and those measured for this research. These differences can
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Figure 8: Collagen absorbtion in the VIS and NIR measured from gelatin sheets
which are 100% collagenous protein.
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Figure 9: Comparison of dermis and epidermis absorbtion values defined in this re-
search (solid and dashed) with that of the literature of Saidi et al. (dashed-dotted) [71]
and Salomatina et al. (circles and asterisks) [72].

be accounted for by different materials, methods, and assumptions made by each of

the researchers. In the NIR, water absorption begins to dominate and the absorption

coefficients measured by each of the researchers and for this dissertation are similar.
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2.4.2.3 Melanosomes. One of the main chromophores in skin is

melanin [43] which is produced by melanocytes within the stratum basale (bottom

layer of the epidermis). Melanin works its way toward the surface of the skin within

biological cells called melanosomes [37]. Differing amounts of melanosomes in the

epidermis account for the greatest difference in skin color between people world-

wide [33, 34, 41] (Table 1). People from areas with intense sunlight have a tendency

to have increased amounts of melanosomes [33] as a form of protection against the

dangerous affects of UV radiation [34]. The absorption of melanosomes (amel) is char-

acterized by:

amel = 6.6× 1011λ−3.33 (14)

where the units for λ are nanometers and the units for amel are cm−1 [35]. The general

trend for melanosome absorption (Fig. 10) is for it to decrease as the wavelength

increases over the VIS and NIR. Beyond 1100nm, melanosome absorption does not

significantly affect skin reflectance as a majority of the absorption is due to water [5].

2.4.2.4 Hemoglobin. The second major chromophore in the VIS is

hemoglobin suspended in the blood which exists in varying concentrations within the

dermis and subcutaneous tissue. There are two types of hemoglobin: oxygenated

hemoglobin and deoxygenated hemoglobin. Oxygenated hemoglobin is hemoglobin

that has been oxygenated in the lungs and transports oxygen to the cells of the body.

Deoxygenated hemoglobin is hemoglobin that has released the oxygen to the cells

of the body, which is then returned back to the lungs. Blood is concentrated just

above and below the dermis, with a limited amount existing within the dermis. The

depth and concentration of blood play a key part in the reflectance spectra in the VIS.

Another important component is the ratio of oxygenated hemoglobin to deoxygenated

hemoglobin. When blood leaves the lungs, it is approximately 100% oxygenated, and
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Figure 10: Melanosome absorbtion in the VIS and NIR based on values measured
by Jacques [35].

when it returns to the lungs, it is approximately 50% oxygenated. We make the

assumption that half of the blood volume is leaving the lungs while the other half is

inbound to the lungs. As such, oxygenated hemoglobin throughout the body makes up

75% of the total hemoglobin while deoxygenated hemoglobin makes up the remaining

25%. It is important to note that concentrations can vary in different parts of the

body based on a number of factors. This is discussed further in Section 2.7.

Figure 11 shows the absorption spectrum for both oxygenated hemoglobin (solid

line, 100% oxygenation level) and deoxygenated hemoglobin (dashed line, 0% oxy-

genation level) in the VIS. The absorption coefficient assumes that hemoglobin has a

typical concentration of 150g/L in blood [44]. The actual concentration of oxygenated

hemoglobin and deoxygenated hemoglobin are each a fraction of this amount and sum

to one. Conditions such as anemia will reduce the overall concentration where condi-

tions such as polycythemia vera will increase the overall concentration [47]. In these

extreme cases, the hemoglobin absorption will be reduced, or exaggerated, respec-

tively.
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Figure 11: Oxygenated hemoglobin and deoxygenated hemoglobin absorption in
the VIS (solid and dashed respectively) at concentration in blood of 150g/L [68].

Oxygenated hemoglobin has a few key absorption features: an m-shaped ab-

sorption at ≈ 560nm and a local minimum at ≈ 510nm. Note that for deoxygenated

hemoglobin, the m-shaped absorption feature does not exist. There is, however, a

local minimum at ≈ 480nm and a local maximum at ≈ 560nm. The shift in absorp-

tion features from oxygenated hemoglobin to deoxygenated hemoglobin change the

reflected color of hemoglobin from deep red to red with a dark bluish tint [48, 70].

For both oxygenated hemoglobin and deoxygenated hemoglobin, the absorption

drops sharply as wavelength increases. Once in the NIR, the effect of hemoglobin

absorption is virtually non-existent.

2.4.2.5 Bilirubin and betacarotene. Bilirubin is a byproduct of hemoglobin

and has a yellow color. It gives people with conditions such as jaundice a yellow

tint [98]. Figure 12 (solid) shows the absorption of bilirubin at a typical concentra-

tion of 0.05g/L in blood [44].

Betacarotene is a chromophore that exists in both skin and blood. Betacarotene

strongly absorbs in the green and blue parts of the spectrum giving objects it colors
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a yellow/orange tint. Figure 12 shows the absorption of betacarotene for a normal

concentration of 2.1 × 10−4g/L in the epidermis (dashed-dotted) and 7.0 × 10−5g/L

in the blood (dashed) [44].
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Figure 12: Absorbtion of bilirubin at concentration in blood of 0.05g/L (solid), be-
tacarotene in the epidermis at concentration of 2.1e−4g/L (dashed), and betacarotene
in blood at concentration of 7.0e−5g/L (dashed-dotted) [44].

2.4.3 Reduced scattering coefficient. The scattering coefficient for skin

has been calculated by multiple researchers with different methods and varying re-

sults [13]. Past works have shown that skin tissue is highly forward scattering [7, 91]

and is based on the size of the collagen fibers in the dermis and their index of refrac-

tion. Rayleigh scattering dominates in the smaller wavelengths while Mie scattering

dominates in the larger wavelengths [71].

The calculation of the reduced scattering coefficient for this research is based

on data collected from living skin and cadavers. Data from living skin consists of 24

reflectance measurements collected from the forearms of people with various levels

of pigmentation. For the cadaver skin data, 76 reflectance measurements and cor-

responding skin samples were collected from multiple sites on 14 bodies. Extracted
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samples were analyzed by a pathologist who provided tissue layer thicknesses and a

labeling of skin color.

The next step in determining the reduced scattering coefficient is the creation of

an engineering model for skin reflectance. This model is discussed in greater detail in

Section 2.5. However, for now, this skin reflectance model is defined with the function

Ω(λ,A, B,Pm) where Pm is a vector of six values used to define the parameters for skin

reflectance, the variables A and B define a universal reduced scattering coefficient,

and λ indicates dependence on wavelength. A description of the vector Pm can be

found in Table 5. Once a universal reduced scattering coefficient is determined, the

skin reflectance model can be redefined as Ω(λ,Pm) since parameters will no longer

be necessary to define the reduced scattering component of the model. The universal

reduced scattering coefficient is constrained by the power law form:

s′(λ) = Aλ−B (15)

where the parameters A and B are positive numbers. This form smoothly and mono-

tonically decreases and allows the modeling of a scattering coefficient that rapidly

decreases in the VIS and becomes near constant in the NIR. This form has been used

by multiple researchers to characterize reduced scattering in tissues with scatterers of

different sizes [96]. Although the different layers of skin may have different scattering

coefficients, they are modeled as being the same for this work. This greatly reduces

the complexity of the engineering model for skin reflectance.

Using all the measurements, the vector Pm and a universal reduced scattering

coefficient for all the samples were adjusted until the best squared error fit (an ad-

ditional weighting factor of 20 was given to the error between 450nm and 590nm)

between measured and modeled results as achieved. The reason for the additional

weighting factor is this area of the reflectance spectra is its domination by both oxy-

genated and deoxygenated hemoglobin absorption (especially for fair skin). We are
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then able to more accurately assess the amount of oxygenated and deoxygenated

hemoglobin in skin if our error function is given additional weight for this portion of

the spectrum. The amount of hemoglobin in skin and the ratio of oxygenated versus

deoxygenated hemoglobin control the shape and amplitude of unique spectral features

in this area of the spectrum as discussed in Section 2.4.2.4. Specific layer depth infor-

mation was used as measured from the samples, vice the universal measurements in

Table 4. Each of the model components was constrained by typical ranges described

in the literature as specified in Table 7.

The first assumption we make is that values for A and B exist that correctly

define the parameters for the scattering coefficient spectra. The next assumption is

the existence of a vector Pm that minimizes the mean square error between the mth

modeled reflectance (Ω(λ,A,B,Pm)) and measured reflectance Mm(λ). It should be

noted that the values in the vector Pm are constrained so as not to exceed what is

biologically possible for skin. Using simulated annealing, A, B, and Pm for m = 1...76

are adjusted until the error, defined as:

E =
1

76

76∑
m=1

∫ 460nm

450nm

(Ω(λ,A, B,Pm)−Mm(λ))2 dλ+

20

76

76∑
m=1

∫ 590nm

460nm

(Ω(λ,A, B,Pm)−Mm(λ))2 dλ+

1

76

76∑
m=1

∫ 1800nm

590nm

(Ω(λ,A, B,Pm)−Mm(λ))2 dλ (16)

is minimized. When E is at or close to its minimum, the values A and B are used to

define the scattering coefficient parameters as shown in Eqn. (17).

The parameter space was searched using a stochastic search algorithm, simu-

lated annealing [20]. Simulated annealing models a physical annealing process, pro-

vides a local optimum solution, and the solutions tend to be robust. A regression on

the resultant scattering coefficient yields the following functional form:
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s′dermn = 30447λ−1.283. (17)

A comparison of the reduced scattering coefficient estimated in this article and

two others from the literature are shown in Fig. 13. The first estimate is based on

Eqn. (18) from Jacques [35] (used in several existing skin models [8, 10,44]):

s′dermj = 2× 1012λ−4 + 2× 105λ−1.5. (18)

The second estimate is based on measurements by Salomatina et al. in [72]. Our

measurements of the reduced scattering coefficient reside below these two. Similar to

the absorption coefficients described earlier, there is a wide variation in skin coeffi-

cients. Once again, this wide variation can be accounted for by the different methods,

materials, and assumptions made by the different researchers. Like the absorption

coefficient calculated for this work, the purpose of the scattering coefficient derived

here is for use in an engineering model of skin reflectance.

2.4.4 Subcutaneous tissue reflectance. The reflectance of subcutaneous tis-

sue is the final optical property considered for our model. Because of a combination

of low scattering and low absorption for skin tissue in some areas of the spectrum,

skin transmittance can be significant. Salomatina et al. [72] measured skin transmit-

tance as high as 40% for a 3mm thick section of abdominal skin. This suggests that a

significant amount of light can transmit through skin, reflect off subcutaneous tissue,

and transmit back out through the surface. As will be shown in Section 2.6.9, the

presence of subcutaneous tissue can increase the reflectance of skin by more than 15%

in the NIR.
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Figure 13: Reduced scattering coefficient for the epidermis and dermis estimated
in the current work (solid), estimated by Jacques (dashed) [35], and measured by
Salomatina et al. (asterisks for dermis and circles for epidermis) [72].

To characterize the diffuse reflectance of subcutaneous tissue (Rsub), reflectance

measurements were collected from eight cadavers (four of these reflectance spectra

are shown in Fig. 14). The reflectances measured have a high degree of similarity

with varying amplitudes. In the visible region of the spectrum, the effect of dif-

ferent amounts of hemoglobin with different levels of oxygenation is clearly visible

from approximately 400nm ≤ λ ≤ 600nm. Large amounts of oxygenated hemoglobin

result in the ω-shaped absorption feature at approximately 580nm while a lack of

hemoglobin results in an overall higher reflectance in the region 400nm ≤ λ ≤ 600nm.

Even though there is a wide variation in subcutaneous reflectance in the VIS, it does

not significantly affect skin reflectance in this region of the spectrum. This will be

demonstrated in Section 2.6.9. Water absorption and lipids begin to dominate the re-

flectance of subcutaneous tissue beyond 1000nm. Water and lipid absorption account

for the pattern of local maxima at 1100nm, 1280nm, and 1620nm and local minima

in the reflectance of subcutaneous tissue at 1180nm and 1400nm.
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Figure 14: Reflectance of subcutaneous tissue for four different cadavers.

To simplify the final layer of the model, the subcutaneous tissue is defined by

a characteristic spectrum and a scale factor. The characteristic spectrum, shown in

Fig. 15, is the mean of several subcutaneous tissue spectra which is then scaled so

max(Rsub) = 1. This spectrum is then scaled by a factor that ranges from 0.45 to

0.7, which corresponds with the maximum and minimum reflectances of the measured

subcutaneous tissue reflectances.

To determine the accuracy of the characteristic subcutaneous reflectance spec-

trum, we adjusted the scale factor for the best fit. The worst case absolute difference

is shown in Fig. 16. The largest difference between the scaled characteristic spectra

and the measured spectra is less than 7.5%. These differences can come from several

sources, including different thicknesses of the subcutaneous fat layer and different

types of subcutaneous fat such as white adipose tissue or brown adipose tissue. To

determine a more accurate subcutaneous tissue reflectance requires a more extensive

characterization of the optical properties of the subcutaneous tissue which is beyond

the scope of this dissertation.
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Figure 15: Mean reflectance of subcutaneous tissue scaled so its maximum value is
one.
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Figure 16: Maximum absolute difference envelope for measured and modeled sub-
cutaneous reflection.

2.5 A model of human skin

The skin reflectance model described here is based on three main sources.

Meglinski and Matcher [53] list the skin layers, their nominal thicknesses, and water

content (Table 4). A report by Jacques [35] describes the absorption and scatter-
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Table 4: Skin layer depths and water percentages for the Meglinski and Matcher
skin model [53].

Layer (m) ≈ Depth (d) Water (w)

Stratum Corneum (1) 20-80µm 5%

Stratum Lucidum (2) 10µm 20%

Stratum Granulosum (3) 10µm 20%

Stratum Spinosum (4) 45µm 20%

Stratum Basale (5) 15µm 20%

Papillary Dermis (6) 150µm 50%

Upper Blood Net Dermis (7) 80µm 60%

Reticular Dermis (8) 1000-3000µm 70%

Deep Blood Net Dermis (9) 80µm 70%

ing parameters of the skin. The final source is this dissertation, specifically collagen

absorption measurements, empirical reflectance measurements of subcutaneous tissue

from cadavers, and re-estimation of the reduced scattering coefficient of the epidermis

described previously in Section 2.4.3.

2.5.1 Model parameters. It should be noted that the model described here

represents skin of “normal” thickness such as the forehead, abdomen, or thigh, and not

“thick” skin such as the back, which has a dermis twice as thick as normal skin [60].

Another type of skin is the skin of the palm of the hand or the sole of the foot, which

has a stratum corneum that is several times thicker than normal skin [60]. Table 4

lists the tissue thickness and water content for each layer from [53]. These are typical

parameters and several factors affect them. Soaking skin in water, for example, would

change the water content of the stratum corneum. A scale model of skin thickness

from the abdomen, an extension of the Meglinski and Matcher model [52] which adds

the upper blood net dermis and the deep blood net dermis, is shown in Fig. 17.

2.5.2 Fresnel reflection. The amount of Fresnel reflection and transmission

(r0 and t0) sum to one with the Fresnel reflection calculated from Eqn. (7). For the
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Figure 17: Magnified image of skin sample along side Meglinski and Matcher
model [52] with the following additional layers in the epidermis: stratum lucidum,
stratum granulosum, stratum spinosum, and stratum basale. Actual depth of skin
sample shown in the image is approximately 1.2mm.

air/stratum corneum interface, r0 = 0.04 and t0 = 0.96. The Fresnel reflection for the

other tissue layers ranges from 3 × 10−6 to 3 × 10−3. These values are small and do

not contribute significantly to the model results and are therefore not considered in

this model.

2.5.3 Absorption and scattering coefficients. The absorption coefficient of

each skin layer is based on the abundance of a given absorber and the absorption

features of that absorber. In other words the total absorption of a layer is modeled as

the sum of the absorption of the constituent components of a layer. The constituent

components include water, collagen, melanosomes, and blood. Within blood are chro-
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mophores such as oxygenated hemoglobin, deoxygenated hemoglobin, bilirubin, and

betacarotene. Within the epidermis is a limited amount of betacarotene.

For the nth layer, the fraction of blood, water, collagen, and melanosomes are

described as bn, wn, cn, and vn respectively. Typical values of wn are listed in Table 4,

cn = 1− wn − vn, and vn = 0 for n 6= 4, 5 (in other words, melanosomes only exist in

layers 4 and 5).

The absorption coefficient of the stratum corneum (layer 1) is modeled as a

combination of the absorption of water, collagen, and betacarotene as:

a1(λ) = c1acol(λ) + w1awat(λ) + ace(λ) (19)

where awat is the absorption of water defined in Section 2.4.2.1, acol is the absorption

of collagen defined in Section 2.4.2.2, and ace is the absorption of a typical amount of

betacarotene in the epidermis (defined in Section 2.4.2.5). These variables are used

to calculate the total absorption coefficient for subsequent layers in the epidermis

The absorption coefficient of the layers of the epidermis (layers 1-5) are modeled

as a combination of the absorption of water, collagen, betacarotene, and melanosomes

as:

an(λ) = amel(λ)vn + acol(λ)cn + wnawat(λ) + ace(λ) (20)

where amel is the absorption of melanosomes and is defined in Section 2.4.2.3.

The absorption coefficient for the layers of the dermis (layers 6-9) are mod-

eled as a combination of the absorption of water, collagen, oxygenated hemoglobin,

deoxygenated hemoglobin, bilirubin, and betacarotene as:
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an(λ) = acol(λ)(cn) + (wn + 0.9bn)awat(λ)

+ (aohb(λ)γ + adhb(λ) (1− γ) + acar(λ) + abil(λ)) bn (21)

where γ is the fraction of oxygenated hemoglobin and (1− γ) is the fraction of de-

oxygenated hemoglobin. Absorption characteristics for hemoglobin (aohb and adhb),

bilirubin (abil), and betacarotene (acar) in blood are described in Section 2.4.2.4 and

Section 2.4.2.5. Since whole blood consists of 90% water, its additional contribution

due to water absorption is also considered and appears as the term 0.9bn in Eqn. (21).

The reduced scattering coefficient for each layer of tissue is defined as:

sn(λ) = sdermn(λ)
cn

0.3
. (22)

The assumption made here is that the amount of scattering is directly proportional

to the fraction of collagen in the dermal tissue. Scattering is modeled as the baseline

reduced scattering coefficient multiplied by the fraction of material in the layer that

is collagen divided by 0.3. The baseline reduced scattering coefficient is equal to the

maximum possible amount of scattering in the dermis since the maximum fraction of

collagen in the dermis is equal to 0.3.

2.5.4 Subcutaneous tissue reflectance. The last layer of the model (layer 10),

as shown in Fig. 17, is a layer of subcutaneous tissue. A simplification of the model

is made by assuming this layer is infinitely thick. As such, we only need to know the

reflectance of this tissue and need not worry about the amount of light transmitted

through it.
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Table 5: Description of parameters in the skin reflectance model.

Parameter Model Parameter Description

Melanosome (%) Percent melanosomes in the epidermis

Blood Level (%) Percent blood in the dermis

Oxygenation (%) Percent oxygenation of the hemoglobin in the blood

Derm. Depth (cm) Depth of the reticular dermis

Collagen (%) Percent collagen in the reticular dermis

Sub. Scale Scale factor for the characteristic subcutaneous reflection

2.5.5 Skin reflectance model: incorporating optical properties. The skin

reflectance model is constructed of the elements described in Section 2.2.1. The values

of r0 and t0 are calculated from the Fresnel equation covered in Section 2.2.1. The

values of rn and tn for n = 1...N −1 are calculated from the Kubelka-Munk equations

(Eqn. (1) and (2) respectively), using the absorption and scattering coefficients for

the respective layers described in Section 2.5.3 as well as the tissue layer depths from

Table 4. The values for rN were determined by laboratory measurements as discussed

in Section 2.5.4. For this work, N = 10. The reflectances and transmittances are used

with Eqn. (10) and Eqn. (11) to determine the total reflectance of skin as described in

Section 2.2.3. In Section 2.4.3, the skin reflectance model is described as the function

Ω(λ,Pm) where Pm is a vector of six parameters that describe the reflectance of the

mth skin sample. Table 5 gives a brief description of each of these parameters.

2.6 Exploring tissue variation effects on the reflectance model output

In this section, we investigate the affect of adjusting various parameters in the

skin reflectance model. This gives insight into how each parameter of the model

affects skin reflectance as a function of wavelength. Adjusting the concentrations and

distributions of different constituents of skin can have a minor affect on the reflectance

of skin in one area of the spectrum and a strong affect in another. Unless otherwise

stated, the parameters used in the model for Type I/II skin are 2.4% melanosomes,
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0.5% blood throughout the dermis, 30% collagen in the dermis, a dermal thickness of

0.15cm, and a 75% oxygenation level for hemoglobin in the blood.

2.6.1 Melanosome level. Figure 18 shows a comparison of model results for

Type I/II and Type V/VI skin. The parameters for Type V/VI are the same as Type

I/II skin except for the melanosome level of 24%. As the melanosome level increases,

the reflectance of skin decreases across the VIS and NIR. The decrease in reflectance

is greater for the VIS region of the spectrum versus the NIR. If the melanosome level

is high enough, the affect of hemoglobin absorption is no longer a factor.
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Figure 18: Modeled skin reflectance for Type I/II skin (melanosome level of 2.4%)
and Type V/VI skin (melanosome level of 24%).

2.6.2 Redistribution of melanosomes. Melanin is made in the stratum

basale, which is the deepest layer of the epidermis, and is transported throughout the

rest of the epidermis in melanosome organelles (see Fig. 17) [55]. The concentration

of melanosomes is higher at the stratum basale versus the other layers of the epider-

mis [55]. However, the current skin model uses a uniform distribution of melanosomes

throughout the epidermis. To determine the effect of redistributing melanosomes, we

examine a uniform distribution of melanosomes throughout the epidermis (see Section
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2.6.1) and a concentration of all the melanosomes in the stratum basale. For both

cases, melanosomes constitute the same overall percentage of the epidermis. The dif-

ference in reflectance between the uniform and concentrated distributions for Type

I/II skin and Type V/VI is shown in Fig. 19. In general, the uniform distribution has

a lower reflectance than the concentrated distribution, especially in the VIS. Further-

more, the difference between the two distributions increases as the melanosome level

increases. The maximum difference in skin reflectance for the different distributions

is approximately 1% for Type I/II skin and 2% for Type V/VI skin..
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Figure 19: Difference in modeled skin reflectance for a uniform distribution of
melanosomes in the epidermis versus the same volume of melanosomes concentrated
in the stratum basale. Difference is shown for Type I/II skin (solid) and Type V/VI
skin(dashed).

2.6.3 Blood level. Figure 20 shows a comparison of model results for skin

with blood concentrations of 0.5% and 0% throughout the dermis for Type I/II and

Type V/VI skin. Different conditions such as strong emotions, sickness, or injury can

affect the concentration of blood in skin, giving it a stronger reddish tint for higher

concentrations or an ashen tint for lower concentrations. These conditions are only

visible if the amount of melanosomes in the epidermis is at weak concentrations so
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as not to obscure the affects of hemoglobin absorption. Since hemoglobin is not a

significant absorber in the NIR, the reflectance of skin in this portion of the spectrum

is very similar to the case where skin has blood.
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Figure 20: Modeled skin reflectance for a typical concentration of dermal blood
and without dermal blood. Reflectance is shown for Type I/II skin with normal
concentration of blood (solid), Type I/II skin without blood (dashed), Type V/VI
with normal concentration of blood (dashed-dotted), and Type V/VI without blood
(dotted).

2.6.4 Redistribution of blood. Although differing amounts of blood in the

dermis are known to significantly affect the spectra of skin, the affect that different

distributions of blood in the dermis have on the spectra of skin is not described in the

existing literature. Blood is concentrated just below the papillary dermis in the upper

blood net dermis and just below the reticular dermis in the lower blood net dermis [53].

A comparison of skin reflectance spectra using the two different blood distributions

described in Table 6 is made. By observation, the percentage of the dermis consisting

of blood is 0.51% for the first distribution. To determine the percentage of the dermis

consisting of blood for the second distribution, one must sum the product of the depth

and percent blood for each layer and then divide the result by the total depth of the
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Table 6: Depths and blood percentages for dermal layers for different blood distri-
butions [53]

Layer Depth (µm) Dist. 1 (%) Dist. 2 (%)

Papillary Dermis 150 0.51 0.4

Upper Blood Net Dermis 80 0.51 3.0

Reticular Dermis 2000 0.51 0.4

Deep Blood Net Dermis 80 0.51 1.0

four layers. The result is once again 0.51 %. In other words, both distributions have

the same amount of blood in the dermis.

For the second distribution, blood in the different layers is in the same propor-

tions, although in smaller concentrations, as the Meglinski and Matcher model [53].

Figure 21 shows the affect of uniformly distributing blood throughout the dermis

rather than distributing it at different concentrations for different layers of skin. Be-

yond 750nm, the difference in reflectance between the two distributions is not signifi-

cant. Below 750nm, the difference in reflectance is up to 1.2% for Type I/II skin and

0.2% for Type V/VI. Increased amounts of blood closer to the surface of skin for the

second distribution increases the overall absorption of light in the VIS. As melanosome

levels increase, this affect is attenuated since melanosomes in the epidermis allow less

light to reach and reflect from the dermis.

2.6.5 Oxygenation level. Figure 22 shows the difference in the reflectance

of skin with 100% oxygenated hemoglobin and 100% deoxygenated hemoglobin for

two different levels of pigmentation. Below 500nm, skin with oxygenated blood has a

lower reflectance than skin with deoxygenated blood while from 600-780nm, skin with

oxygenated blood has a higher reflectance. This combination of features gives skin

with excessive amounts of deoxygenated blood a bluish tint and excessive amounts

of oxygenated blood a reddish tint. The characteristic ω-shape absorption feature of

oxygenated blood between 500-600nm is also one of the major differences between skin

with oxygenated versus deoxygenated blood. Beyond 780nm, hemoglobin absorption
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Figure 21: Difference in modeled skin reflectance for an even distribution of blood
in the dermis versus the same amount of blood in the papillary dermis, upper blood
net dermis, reticular dermis, and deep blood net dermis at concentrations of 0.4%,
3%, 0.4%, and 1% respectively (see Table 6). Difference is shown for Type I/II skin
(solid) and Type V/VI (dashed).

of both skin types becomes less significant and the difference between skin with either

type of hemoglobin is very small. Melanosomes attenuate hemoglobin absorption since

it exists in the epidermis (above the dermis) where hemoglobin is present. This can

be seen when comparing the difference in the spectra for the two different oxygenation

levels for skin with 2.4% melanosomes versus skin with 24% melanosomes.

It is important to note that hemoglobin in the body is actually a combination of

oxygenation and deoxygenated hemoglobin. Hemoglobin typically has an oxygenation

level of 75%. This mixture results from arteries carrying approximately 100% oxy-

genated hemoglobin from the lungs and veins returning a mixture of approximately

50% oxygenated hemoglobin and 50% deoxygenated hemoglobin to the lungs for oxy-

genation. While on average blood is oxygenated 75% throughout the body, large

variations in oxygenation level can occur at the surface of skin [88].
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Figure 22: Difference in modeled skin reflectance for skin with a typical concentra-
tion of blood where all the hemoglobin is oxygenated versus the case where all the
hemoglobin is deoxygenated. Difference is shown for Type I/II skin (solid) and Type
V/VI skin (dashed).

2.6.6 Dermal thickness. In general, thin skin has a higher reflectance than

thick skin. This is because thinner skin is more transparent and the highly reflective

subcutaneous tissue becomes more of a factor in the total reflectance of areas with

thinner skin. Figure 23 shows the difference in reflectance for dermal thicknesses

of 3mm and 1.5mm for both Type I/II and Type V/VI skin. Between 600nm and

1200nm, the reflectance spectra of thin skin is higher than thick skin for a given pig-

mentation level, while outside of this range, the reflectance spectra are approximately

the same.

2.6.7 Collagen. The amount of collagen in skin can vary from 15-30% of

the dermal tissue. The general trend is for younger people to have higher levels of

collagen in their skin versus older people. Since collagen has a higher absorption

in the VIS, skin with more collagen has a lower reflectance over this region of the

spectrum. Figure 24 shows the difference in the reflectance spectra of skin with 30%

collagen and 15% collagen for Type I/II (solid) and Type V/VI (dashed). Between
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Figure 23: Modeled skin reflectance for Type I/II skin with a dermal thicknesses
of 3mm (solid), Type I/II skin with a dermal thicknesses of 1.5mm (dashed), Type
V/VI skin with a dermal thicknesses of 3mm (dashed-dotted), and Type V/VI skin
with a dermal thicknesses of 1.5mm (dotted).

600-1000nm, where melanosome, hemoglobin, and water absorption do not dominate,

reduced collagen content makes the skin more transparent. This is due to the reduced

amount of collagen absorption, where increases in the reflectance of skin are due to

the highly reflective subcutaneous fat beneath the skin. The difference in reflectance

for Type V/VI skin is smaller since less light makes it through the epidermis to reflect

off the dermis.

2.6.8 The effect of including the stratum lucidum and stratum granulosum.

The stratum lucidum and stratum granulosum are very thin layers just below the

stratum corneum going through a process of keratinization where parts of the cells

are being replaced by keratin. Because of this, we assume that the water content is

between that of the stratum spinosum and the stratum corneum. The Meglinski and

Matcher model [52] assumes that the water content in these two layers matches that

of the stratum spinosum at 20%. The other extreme would then match the water

content in the stratum corneum at 5%. Figure 25 shows the difference in modeled
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Figure 24: Modeled difference in skin reflectance for skin with 30% collagen versus
skin with 15% collagen. Difference is shown for Type I/II skin (solid) and Type V/VI
skin (dashed).

reflectance for these two different water levels for the stratum lucidum and stratum

granulosum. For both fair skin and dark skin, the difference in reflectance between

the two extremes of water content is less than 1×10−3 (0.1%). Increasing the amount

of water, while simultaneously reducing collagen by a corresponding amount, has the

overall affect of decreasing absorption in the VIS and increasing absorption in the

NIR. This accounts for the fact that increasing the water content in these layers has

the affect of increasing reflectance in the VIS and reducing reflectance in the NIR.

Increasing the melanosome level of the skin reduces these differences slightly in the

VIS since the reflectance of the dermal tissue below the melanosomes in the epidermis

is not as much of a factor. The difference in reflectance is less than 0.1% over the

entire spectrum for the full range of melanosome levels and does not significantly

affect the model.

2.6.9 The effects of subcutaneous tissue. Figures 26 and 27 show the affect

of scaling the subcutaneous reflectance shown in Fig. 15 by a factor of 75%, 50%,

and 0%. Subcutaneous reflection is not significant for 600nm ≤ λ ≤ 1350nm. For
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Figure 25: Difference in modeled skin reflectance for skin with 20% water versus
5% water in the stratum lucidum and stratum granulosum. Difference is shown for
Type I/II skin (solid) and Type V/VI skin (dashed).

600nm ≤ λ ≤ 1350nm, the transmittance of skin is fairly high because the absorption

of collagen and the chromophores of skin is fairly low in this range. Beyond 1350nm,

water absorption is significant and most of the incident light energy is absorbed.
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Figure 26: Modeled Type I/II skin reflectance for characteristic subcutaneous re-
flectance spectra scale factors of 75% (solid), 50% (dashed), and 0% (dashed-dotted).
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Figure 27: Modeled Type V/VI skin reflectance for characteristic subcutaneous
reflectance spectra scale factors of 75% (solid), 50% (dashed), and 0% (dashed-dotted).

2.6.10 Comparison of our reflectance skin model results using absorption and

scattering coefficients described in this dissertation and existing literature. Fig-

ures 28 and 29 show a comparison of results using three sets of absorption and scat-

tering coefficients for Type I/II skin and Type V/VI skin respectively. For Fig. 28,

each set of results uses the same melanosome level of 2.4%, blood percentage of 0.5%,

and oxygenation level of 75%. For Fig. 29 the same holds except a melanosome level

of 24% is used. The skin thicknesses used for the results are based on values de-

scribed by Meglinski and Matcher in [52] (Table 4). The absorption and scattering

coefficients described by Jacques in [35] and Salomatina et al. in [72] result in a mod-

eled reflectance significantly higher than the modeled reflectance calculated from our

estimates of the absorption and scattering coefficients which are based on our mea-

surements of collagen absorption and measurements collected from living and cadaver

skin.

51



450 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

R
ef

le
ct

an
ce

 

 

Nunez
Jacques
Salomatina et al
Meas. Type I/II

Figure 28: Measured Type I/II skin reflectance and modeled Type I/II skin re-
flectance using scattering and absorption coefficients developed in this dissertation
(Section 2.6), described by Jacques in [35], and measured by Salomatina et al. in [72].
Parameters for the model were not adjusted for best match with measured data.
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Figure 29: Measured Type V/VI skin reflectance and modeled Type V/VI skin
reflectance using scattering and absorption coefficients developed in this dissertation
(Section 2.6), described by Jacques in [35], and measured by Salomatina et al. in [72].
Parameters for the model were not adjusted for best match with measured data.
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Table 7: Minimum and maximum parameters for cadaver and living skin used in
the skin reflectance model developed in this dissertation. Values are derived from the
literature.

cadaver living

Parameter min. max. min. max.

Melanosome (%) 1.5 43 1.5 43

Blood Level (%) 0 1 0.25 1

Oxygenation (%) 0 90 20 90

Dermal Depth (cm) n/a n/a 0.1 0.3

Collagen (%) 15 30 30 30

Sub. Scale 0.51 0.65 0.62 0.65

2.7 Comparing skin reflectance model output with collected data

Reflectance measurements from two cadavers and two living subjects is com-

pared against the model estimate of those same reflectance measurements. Melanosome

levels, hemoglobin levels, hemoglobin oxygenation levels, collagen levels, dermal thick-

ness, and subcutaneous reflectance were all adjusted to provide the best mean-square

error fit with the measured data as described in detail in Section 2.4.3.

Parameters are constrained with the values in Table 7 with the resulting pa-

rameters shown in Table 8. Melanosome percentages in the epidermis are constrained

based on values in Table 1. The blood levels were constrained based on the mean

blood level estimated during the simulated annealing process. The constraints are

half to double the estimated mean blood level. Oxygenation value constraints for liv-

ing skin were based on values obtained from [88] while oxygenation values for cadaver

skin were allowed to drop to 0%. The dermal depth constraint for the living skin

samples come from [56] which measured the thickness of skin layers for the forearms

of multiple subjects. For cadavers, dermal depths are measured. The range of subcu-

taneous reflectance values is constrained by the range of reflectance measurements of

subcutaneous tissue collected for this work.
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Both skin reflectance measurements for the cadavers came from skin with a

low pigmentation level and a low hemoglobin level. The melanosome percentage

levels for the cadavers may seem high when compared with the values described in

Table 1 for different skin pigmentation levels. However, the values in Table 1 assume

an epidermal thickness of 60µm while the epidermal thickness of the cadavers is a

fraction of this and known. In other words, skin with a thinner epidermis requires a

higher melanosome percentage versus skin with a thicker epidermis for both types of

skin to have the same spectra. The blood level for both cadaver samples is also very

low when compared with the amount of blood in living skin. After death, gravity

can pull blood from skin and cause it to pool on the inside. The less blood at the

surface of the skin the less meaningful the oxygenation values listed in Table 8 are.

The extreme example of this is the case where there is no blood in the dermal tissue

making the oxygenation values meaningless. The value used for the dermal depth

parameter is measured from a skin core sample at the same location the reflectance

measurement was collected. As such, this parameter is not made adjustable for the

cadavers. The subcutaneous reflection for the cadavers is well within the bounds set

in Table 7.

The two sample skin reflectance measurements for living people came from

Type I/II skin and Type V/VI skin. The melanosome percentages for both skin

Types correspond well with the values in Table 1. The blood level for the Type I/II

skin is well within the set bounds while the value for the Type V/VI skin is at the

maximum value. However, the melanosomes in the epidermis attenuate the affect of

any blood in the dermis, making it difficult to obtain an accurate value for blood

level. The oxygenation value for the Type I/II skin is well within the set bounds

while, once again, the value for the Type V/VI skin is at the maximum value. For

the same reason it is difficult to obtain accurate blood levels for highly pigmented

skin, it is difficult to obtain the oxygenation level of the dermal blood. Changing the

oxygenation level of darkly pigmented skin has very little affect on the reflectance

spectra.
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Table 8: Parameters used in the skin reflectance model developed in this disserta-
tion that provide the best match with sample pair of reflectance measurements from
cadavers and sample pair of reflectance measurements from living skin.

Parameter Cad. 1 Cad. 2 Live 1 Live 2

Melanosome(%) 10 18 2 28

Blood Level (%) 0 0 0.61 0.75

Oxygenation (%) 60 60 46 43

Derm. Depth (cm) n/a n/a 0.101 0.100

Sub. Factor 0.51 0.65 0.62 0.65

The skin depths applied to the model are shown in Table 9 where the skin layer

thicknesses for the cadavers come from measurements of skin samples and for living

people were a parameter in the model that provided the best fit with measured data.

Figures 30 and 31 compare skin reflectance measurements from fair-skinned

cadavers generated using model results with optimized parameters. Both cadaver skin

samples had few melanosomes and little blood so the effect of these chromophores on

skin reflectance is dramatically reduced.
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Figure 30: Sample comparison of modeled and measured cadaver thick Type I/II
skin reflectance. Selected sample has among the highest correlation between measured
and modeled data for the cadaver measurements.
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Table 9: Skin layer depths in cm used in the skin reflectance model developed
in this dissertation for sample pair of reflectance measurements from cadavers and
sample pairs of reflectance measurements from living skin. Cadaver skin layer depths
are measured and living skin layer depths are from [53]

Layer Cad. 1 Cad. 2 Live 1 Live 2

1 0.00425 0.0015 0.002 0.002

2 0.000338 0.000281 0.001 0.001

3 0.000338 0.000281 0.001 0.001

4 0.001519 0.001266 0.0045 0.0045

5 0.000506 0.000422 0.0015 0.0015

6 0.002513 0.0067 0.015 0.015

7 0.001238 0.0033 0.008 0.008

8 0.13062 0.08645 0.1520 0.1150

9 0.006875 0.00455 0.008 0.008

450 900 1350 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

R
ef

le
ct

an
ce

 

 

Measured Fair Skin
Modeled Fair Skin

Figure 31: Sample comparison of modeled and measured cadaver thin Type I/II
skin reflectance. Selected sample has among the highest correlation between measured
and modeled data for the cadaver measurements.

Reflectance measurements from Type I/II skin and Type V/VI skin were se-

lected for comparison with the model. Figures 32 and 33 show the resulting compar-
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ison for Type I/II and Type V/VI skin respectively. Once again, model parameters

are adjusted to provide the best fit with the measured data.
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Figure 32: Sample comparison of modeled and measured living thin Type I/II skin
reflectance. Selected sample has a typical correlation between measured and modeled
data for the living skin measurements.
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Figure 33: Sample comparison of modeled and measured living thin Type V/VI
skin reflectance. Selected sample has a typical correlation between measured and
modeled data for the living skin measurements.
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Table 10: RMSE results between modeled and measured skin reflectances for living
and cadaver skin.

Type RMSE Mean RMSE STD

Living 0.011159 0.004844

Living Type I/II 0.0093225 0.0021872

Living Type V/VI 0.016284 0.0079289

Cadaver 0.024345 0.012278

All 0.020199 0.012077

To determine the effectiveness of adjusting model parameters to make modeled

reflectance match measured reflectance, the root mean square error (RMSE) between

measured and modeled reflectance is calculated. The error function used earlier for

matching modeled and measured data is based on the mean square error with the error

from a portion of the spectrum (460nm-590nm) scaled by a factor of 20. However to

provide a more intuitive comparison between measured and modeled data, the RMSE

is used since its units are the same as reflectance. For the four examples described in

this section (two cadaver measurements and two living measurements), the errors are

0.0083391, 0.0089603, 0.011885, and 0.026699, respectively. The mean and standard

deviation for the RMSE for the reflectance measurements are presented in Table 10.

The general trend was for the mean and standard deviation for the RMSE to be

lower for the living skin reflectances versus the cadaver skin reflectances. The mean

and standard deviation for the RMSE error was lower for the Type I/II living skin

reflectances versus the the Type V/VI skin reflectances. A complete comparison of

modeled and measured skin reflectances for all of the skin samples collected for this

work can be found in Appendix C. This includes skin layers depths, model parameters,

and figures showing modeled and measured skin reflectances.

Figure 34 shows the mean RMSE between measured and modeled data for all of

the reflectance measurements (blue), all of the reflectance measurements from living

people (red), and all of the reflectance measurements from cadavers (green). Two

things to note are the majority of the reflectance measurements are from the cadavers
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(52 out of the 76) and that the errors for the cadavers were greater overall than for

the living skin reflectances. As such, the mean error for all of the reflectances was

slightly less than that of the mean reflectance for the cadavers. The mean errors

for both living and cadaver reflectances is fairly low before 600nm. The errors then

rise significantly in the NIR before it drops significantly beyond 1350nm. The area

between 600nm and 1350nm corresponds to a part of the spectra where the dermis and

epidermis have a high transmittance and subcutaneous reflectance plays a significant

role in the overall reflectance of skin.
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Figure 34: Average RMSE as a function of wavelength for living measured skin re-
flectances, cadaver measured skin reflectances, and combination of living and cadaver
measured skin reflectances.

2.8 Distribution and sensitivity of parameters

A list of each set of model parameters that best fit the measured data are listed

in Appendix C. To determine if the model is credible, a histogram of each parameter

is generated using the parameter values determined for the living skin reflectances

and the cadaver skin reflectances. Analysis of the sensitivity of the model output to

input parameters is also done.
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2.8.1 Distribution analysis of model parameters. Figure 35 shows the col-

lection of 6 histograms, one for each of the adjustable skin parameters, for the 24

skin reflectances of living subjects. The histogram for melanosome percentage shows

the majority of the skin reflectances are for people with Type I/II skin with a lim-

ited number of people with Type III/IV/V/VI skin. This corresponds well with the

fact that the majority of skin reflectances were collected from people with fair skin

and only a few of the skin reflectances were collected from people with moderately

pigmented to dark skin. The histogram for blood distribution shows that their was a

wide variety of blood volumes in the living skin reflectances. These could be caused

by a wide variety of conditions such as pressure on the skin from the measuring probe

(blood would leave the skin) or heat from the light in the measuring probe (blood

volume would increase in the skin). The histogram for oxygenation level shows a

range of values from 20% to 40%. As stated in Section 2.4.2.4 and 2.7, these values

correspond with oxygenation measurements others have reported [88]. The dermal

depth is concentrated in the 0.1cm bin which corresponds to relatively thin skin. The

reason for this observation is all of the measurements for living skin came from the

subjects’ forearms which has fairly thin skin. The collagen percentages covers the full

range of 15% to 30%. The subcutaneous reflection scale factor covers the full range

from 0.5 to 0.75 with a greater concentration at the top half of the range.

Figure 36 shows the histograms for 52 cadaver skin reflectances. The histogram

for the melanosome percentages are concentrated on the bottom half of the percent-

ages with what seems like an inordinate amount of the values concentrated in the

region between 7% and 20%. This is because the epidermis for the cadavers are gen-

erally thinner than those from living people since cadavers are generally from older

people with atrophied skin. The atrophied skin is thinner and as such has a greater

concentration of melanosomes versus skin with a thicker epidermis and the same color.

However, despite epidermis thickness, people with the same skin color would still have

similar amounts of melanosomes in their skin. The histogram for the blood percentage

shows the percentage of blood concentrated near 0%. This is because the blood in
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Figure 35: Histograms of the six model parameters used for the best match with
measured living skin reflectances. Parameter name is listed on the x-axis of each
histogram.

the cadaver has left the surface of the skin. The histogram for the oxygenation per-

centage is concentrated on the extreme edges of the histogram. As discussed earlier,

oxygenation of the hemoglobin is not a significant factor if there is very little blood

in the skin. The algorithm used to determine the model parameters had a tendency

to select an extreme value of oxygenation if there was not a significant amount of

blood in the skin. The histogram for the dermal depth shows a range of thicknesses

from less than 0.1cm to more than 0.5cm. This is due to the fact that skin samples

were collected from various parts of the cadaver which had skin with various thick-

nesses. The histogram for collagen percentages was concentrated at the 15% end of

the histogram. This is due to the fact that as age increases, the amount of collagen
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in skin decreases. The histogram for subcutaneous reflection covers the full range of

scale factors. This is because the skin samples were collected from various parts of

the body which would have differing amounts of subcutaneous reflection.
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Figure 36: Histograms of the six model parameters used for the best match with
measured cadaver skin reflectances. Parameter name is listed on the x-axis of each
histogram.

2.8.2 Model sensitivity analysis. The Jacobian matrix (matrix of deriva-

tives) is calculated to determine the sensitivity of the reflectance model as a function

of the six model parameters. The Jacobian is a M ×N matrix of partial derivatives

based on a function with N inputs and M outputs. For this analysis, M = 1351

where each row represents a wavelength from 450nm through 1800nm in 1nm incre-

ments and N = 6 where each column represents a model parameter. The element of
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the matrix at (m,n) is the partial derivative of the reflectance at the mth wavelength

versus the nth parameter. The Jacobian is calculated for each of the 76 model results

that best matched the 76 measured skin reflectances previously described. A rela-

tively high partial derivative for a specific parameter at a specific wavelength means

that the model is sensitive to the parameter at that wavelength. To characterize the

sensitivity of the model, the mean of the Jacobian matrices was calculated for various

categories. These categories include the 24 measurements from living subjects, 52

measurements from cadavers, 4 measurements from the four fairest living subjects,

and 4 measurements from the four darkest living subjects. The resulting columns

from each of the matrices was then plotted as shown in the rest of this section.

The first category analyzed is all of the model results for the living skin re-

flectances as shown in Fig. 37. The figure shows that the model is most sensitive in

the VIS to the melanosome percentage. As the wavelength increases, the model be-

comes less sensitive to the melanosome percentage which corresponds to the fact that

melanosome absorption decreases as wavelength increases. The model is also highly

sensitive to the percentage of collagen in the dermis. This sensitivity is constant

across the VIS and NIR. In fact, the model becomes more sensitive to the collagen

percentage than the melanosome percentage in the NIR. The sensitivity of the model

to subcutaneous reflection is approximately the same as the collagen percentage in

the VIS. In the NIR, the model sensitivity to subcutaneous reflection drops. Next

in sensitivity for the model is the dermal thickness. The sensitivity of the model

to dermal thickness is constant across the VIS and most of the NIR accept for the

water absorption bands around 1400nm and 1800nm. Around 550nm, the model is

highly sensitive to the amount of blood in the dermis. As the wavelength increases,

the model becomes less sensitive to blood volume. Finally, the model is only slightly

sensitive to changes in the oxygenation versus other parameters. However, the very

specific absorption features of oxygenated and deoxygenated hemoglobin make it a

very important component in the model.
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Figure 37: Sensitivity analysis for the skin model parameters for skin from living
subjects over the VIS and NIR. Sensitivity is the partial derivative of the skin model
function versus the specified model parameter at a particular wavelength. Skin model
parameters include melanosome level, blood level, oxygenation level, dermal thickness,
collagen level, and subcutaneous reflection level.

Figure 38 shows the sensitivity of the model when used for cadaver reflectances.

For the cadavers, the model is more sensitive to the amount of blood and less sensitive

to the oxygenation levels than for the living skin reflectances. This is because there is

very little blood in the cadavers. This means a small increase in blood causes a large

change in reflectance. Furthermore, a lack of blood in the cadavers means a change in

the oxygenation of that blood will have little effect on the reflectance. The sensitivity

of the model for the rest of the parameters is approximately the same for the living

and cadaver skin reflectances.

Figures 39 and 40 show the sensitivity of the model using the four fairest living

skin reflectances and the four darkest living skin reflectances respectively. Since the

majority of the living skin reflectances were for fair-skinned persons, Fig. 37 and

Fig. 39 are approximately the same. As shown in Fig 40, dark skin is less sensitive

than fair skin to melanosome percentage and blood volume in the skin. For fair skin,

a small change in the melanosome percentage makes a big difference in reflectance.
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Figure 38: Sensitivity analysis for the skin model parameters for skin from cadavers
over the VIS and NIR. Sensitivity is the partial derivative of the skin model function
versus the specified model parameter at a particular wavelength. Skin model pa-
rameters include melanosome level, blood level, oxygenation level, dermal thickness,
collagen level, and subcutaneous reflection level.

However, for dark skin, the same change in melanosome percentage does not create

the same amount of change in reflectance. This means the model is less sensitive

to melanosome percentage for dark skin. As discussed earlier, melanosomes in the

epidermis block the effect of hemoglobin absorption in the dermis. This means, for

dark skin, the model is less sensitive to blood volume and the oxygenation of the

hemoglobin in that blood.

2.9 Discussion

In this chapter we described a model for the diffuse reflectance of human skin

using the Kubelka-Munk equations where skin is modeled as a multi-layer material.

Unlike other models which represent skin as multiple layers this model incorporates

multiple reflectances between optical interfaces. This allows for the addition of layers

to the model without a reduction in accuracy.
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Figure 39: Sensitivity analysis for the skin model parameters for fair skin (Type
I/II) from living subjects over the VIS and NIR. Sensitivity is the partial derivative
of the skin model function versus the specified model parameter at a particular wave-
length. Skin model parameters include melanosome level, blood level, oxygenation
level, dermal thickness, collagen level, and subcutaneous reflection level.

Good results for the model require exact values for the absorption and scattering

coefficients of the constituent materials of skin. The absorption and scattering coeffi-

cients of many of these materials are available in the current literature. However, due

to limitations in the ability to isolate many of these materials without changing their

optical properties, the accuracy of the measured absorption and scattering coefficients

is limited. This is one possible source of error in the model.

One absorption coefficient measured specifically for this work was that of col-

lagen. The absorption coefficient of collagen for the VIS and NIR was obtained

from measurements of clear gelatin sheets (100% collagenous protein) using the ASD

FieldSpec3r Spectrometer. Although the ASD FieldSpec3r Spectrometer provided

accurate measurement of the absorption coefficient across the VIS and NIR, other

types of equipment such as an integrating sphere used in conjunction with a spectro-

meter could provide even more accurate measurements. Better measurements of the

collagen absorption coefficient would result in a more accurate skin reflectance model.
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Figure 40: Sensitivity analysis for the skin model parameters for darkly pigmented
skin (Type V/VI) from living subjects over the VIS and NIR. Sensitivity is the par-
tial derivative of the skin model function versus the specified model parameter at a
particular wavelength. Skin model parameters include melanosome level, blood level,
oxygenation level, dermal thickness, collagen level, and subcutaneous reflection level.

The next element measured for the skin reflectance model was the scattering

coefficient of skin tissue. This was based on reflectance measurements from living

people and cadavers as well as skin samples collected from cadavers. For the purpose

of this work, the scattering coefficient of the epidermis was modeled as the same for

all types of skin. For the dermis, the scattering coefficient was modeled as a function

of the collagen percentage in the dermis. In reality, there is likely a greater variation

in the scattering coefficient for the skin of different people. This is another likely

source of error in the model.

For completeness, the final element of the model is the reflectance of subcuta-

neous tissue. We collected multiple reflectances of subcutaneous tissue which we used

to create a characteristic spectrum. The spectrum can be scaled to approximate a

wide range of subcutaneous tissue spectra. Although this method did a reasonable

job approximating the reflectance spectra of subcutaneous tissue, there are still large
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enough differences in measured and modeled subcutaneous tissue to induce errors in

the skin reflectance model.

Even with the possible sources of error in the model, all of the elements allow

for a model that can accurately match a wide variety of skin reflectances. The mean

RMSE between the model and the measured skin reflectances from living subjects

and cadavers was only 2%.

An analysis of the model parameters which best fit the measured data shows a

reasonable distribution of model parameters. The distribution of model parameters

can be explained by the parameter boundaries (minimum and maximum possible val-

ues of the parameter based on the biology of skin) and by the types of skin measured.

The distribution of the melanosome percentage correlates with the distribution of skin

colors measured. For this research, there was a higher concentration of measurements

for fair skin. The distribution of blood volumes varied widely for the living subjects

while it was concentrated near zero for the cadavers. Blood in the skin of living

subjects will vary because of different biological conditions. For cadavers, blood has

the tendency to leave the skin. Oxygenation levels for living subjects was well within

the ranges found in the literature while a lack of blood in the cadavers reduced the

validity of the oxygenation levels estimated for cadavers. The dermal thickness for

the living subjects was concentrated on the lower end of the dermal thickness distri-

bution while the cadavers had a more uniform distribution. This can be explained by

the fact that the skin measured on the living subjects came from the forearm which

has a relatively thin dermal thickness. The measurements for the cadavers, however,

came from multiple areas of the body with differing amounts of dermal thickness.

The collagen percentage for the living subjects had a fairly uniform distribution while

the collagen percentage for the cadavers was concentrated on the lower end. This

corresponds with the fact that the cadavers were older people and a reduction in the

amount of collagen in skin comes with age. Finally, the subcutaneous reflectance

parameters for the living subjects and cadavers was almost uniformly distributed.
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This can be accounted for by the fact that different subjects (living and cadaver) had

different amounts of muscle and fat making up their subcutaneous tissue.

The sensitivity of the model output to changes in the parameters is also ex-

plainable based on the biology and optical properties of skin. Melanosome percentage

was the most sensitive parameter in the VIS with subcutaneous reflectance and colla-

gen percentage following in sensitivity. Blood volume, hemoglobin oxygenation, and

dermal thickness were much less sensitive than the other parameters in the VIS. In

the NIR, collagen percentage takes on a greater percentage while the sensitivity of

melanosome percentage and subcutaneous reflectance drops. The sensitivity of the

rest of the parameters either decreases or remains the same in the NIR. Even though

the sensitivity of model parameters varies, all of the parameters are important in

creating the most accurate model possible.
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III. Application of Skin Reflectance Model for Determining

Sensor Reaching Radiance for Imaging Human Skin

3.1 Introduction

Knowledge of the reflectance spectra of a material as well as the incident radi-

ant light allows one to determine the expected sensor input. A relevant example of

this would be a color camera recording the response of sunlight reflecting off human

skin. The radiance of sunlight is well documented and easily measured with an ASD

FieldSpec3r Spectrometer. The reflectance of human skin is also determined using

the reflectance model developed in this dissertation where various parameters such as

melanosome levels or hemoglobin levels can be adjusted. The reflectance of human

skin can also be measured with an ASD FieldSpec3r Spectrometer. The former al-

lows one to model specific conditions such as vasodilation and vasoconstriction which

could be reactions to embarrassment or nervousness respectively. These and other

conditions visibly manifest themselves within different portions of the spectra of skin.

One may use model generated spectra to simulate any number of conditions as they

relate to psycho-physiological responses. This gives one a way to understand what

is detectable and what is not. The final aspect is the camera system response (op-

tics and focal plane array). In this way, given what one knows one needs to detect,

one may design the system with an appropriate response to perform the specified

task. In the examples here, we use a typical red-green-blue (RGB) camera response,

something well understood and well documented. A generic response of a color (i.e.,

RGB) sensor is also well documented. Based on these three pieces of knowledge, the

expected output of the camera to an arbitrary light source on skin can be determined.

A block diagram demonstrating this concept is shown in Fig. 41

To demonstrate this concept, the skin reflectance model is used to generate re-

flectance spectra for use on an avatar created in the RGB color space. The avatar is

rendered with various parameters adjusted in the skin reflectance model including der-

mal blood levels and epidermal melanosome levels. Different illumination conditions

are applied to the spectra which are then “imaged” by an RGB camera. However,

70



Illumination
Source

Atmospheric
Effects from
Source to Skin

Skin Model
Reflectance

Atmospheric
Effects from
Skin to Camera

Optical
Component
Response

Detector
Array
Response

Signal as
Seen by
Camera

Figure 41: Block diagram of an imaging system used to model camera output when
imaging skin.

since the skin model is a diffuse model and does not contain a specular component,

we are limited to the case where the illumination source is normal to the skin.

3.1.1 Illumination sources. Total illumination can be a complicated assort-

ment of multiple light sources and reflections of these light sources off of different

materials. For simplicity, the two sources used on our avatar are an equal energy

spectrum and a blackbody radiator. An equal energy spectrum is simply a light

source with a flat spectral distribution. A blackbody radiator is an object at a given

temperature T (in Kelvin) that emits a radiation spectrum defined by:

M(λ) =
2πhc2

λ5(e
hc

λkT − 1)
(23)

where h = 6.626×10−34Js, c = 3×108 m
s
, k = 1.38×10−23 J

K
, and units of wavelength

(λ) are in meters (m) [18]. Many common light sources can be approximated as black-

body radiators including sunlight (T ≈ 5250K), moonlight or a “cool” incandescent

light bulb(T ≈ 4100K), a “warm” incandescent light bulb (T ≈ 3200K), and an open

flame (T ≈ 1800K) as shown in Fig.42. All of the light sources used to illuminate

the avatar are scaled to have equal total power in the region of the spectrum between

380nm and 825nm. This allows an accurate comparison of the effect of the illumi-

nation source on the avatar without having to consider the illumination level. The

light sources are also scaled so that the brightest possible skin pixel (based on the
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skin reflectance model) does not saturate any of the channels in the RGB color space

used to demonstrate the sensor response concept.
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Figure 42: Scaled blackbody radiance curves for 5250K, 4100K, 3200K and 1800K.
Curves are scaled so sum of area under curves between 380nm and 825nm are equal.

3.1.2 The RGB camera response. In order to color the avatar, spectra are

generated from our physics-based model of skin reflectance and of blackbody curves

of several lighting sources. The product of the two spectra are then converted to the

RGB color space. Each pixel is parameterized based on the desired effect of that pixel.

For example, one may determine RGB values transformed from the skin reflectance

model based on different lighting conditions, blood volumes, hemoglobin oxygenation

levels within blood, or epidermal melanosome levels.

For the cheek regions, it is assumed that melanosome levels and hemoglobin

oxygenation levels are the same as the rest of the face. We wish to increase blood

volume in the cheeks to give a rosy cheek effect. To simulate this affect, the method

defined by Kalra and Magnenat-Thalmann is used [39]. First, an area of the cheek

for the blush is defined with a Bezier curve. Next, a Gaussian distributed spatial

gradient within this blush area is used to define the blood volume within the dermis.
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The blood volume in the cheek varies between the highest volume in the center of

the cheek and the value for the rest of the face. This is done to give a more realistic

depiction of blood distribution in these regions.

Since the reflectance spectra tell us how much of the incident light energy is

reflected from the skin surface, they are scaled using a matrix of intensity values.

This matrix accounts for lighting effects in the environment and simulates the amount

of energy incident on each of the skin pixels. These intensity values are based on a

gray-scale version of the original image scaled so the maximum value is equal to one.

In this way, shadows and facial features are preserved in the final avatar which is

necessary since the model only accounts for the diffuse portion of skin reflectance.

Once the skin reflectance spectrum and the spectrum of the lighting source are

known, the two spectra are multiplied together to form a reflected radiance spectrum,

s(λ). Creating realistic skin color involves a transformation of s(λ) into the CIE color

space (three dimensional color space defined by the channels X, Y, and Z) followed

by a transformation into the RGB color space. This first conversion is done using

Eqn. (24) where values for x(λ), y(λ), and z(λ) are shown in Fig. 43 [32, 94] and

enumerated in Appendix B.

X =

∫ ∞

0

s(λ)x(λ)dλ

Y =

∫ ∞

0

s(λ)y(λ)dλ

Z =

∫ ∞

0

s(λ)z(λ)dλ (24)

Once values of X, Y , and Z are determined, they are transformed into values

of R, G, and B using [29]:
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Figure 43: Response curves as a function of wavelength for the Commission inter-
nationale de l’clairage (CIE) color space.
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 . (25)

Although it would be possible to transform the hyperspectral data directly into the

RGB colorspace rather than first transforming the data into the XYZ colorspace,

transforming the data into the XYZ colorspace allows a user additional flexibility.

The selection of the RGB colorspace in this work is for demonstration purposes, but

this method is easily adapted for transformation of the XYZ colorspace to other

commonly used three-dimensional colorspaces.

Model input parameters are easily changed to incorporate additional regions

to the avatar for study (e.g. bruises, rashes, or freckles). Assumptions of uniform

spatial distribution of melanosome level and blood oxygenation level parameters are

for modeling simplicity only. Non-uniform spatial distributions of chromophores as
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well as the adjustment of the volume of chromophores, such as bilirubin, and beta-

carotene, can be used to increase the realism of the results.

The avatar used for this work is based on an image created by DAZ Productions,

Incorporated [17]. This work does not generate spectra for the eyes, lips, hair, or the

avatar’s background environment; they retain the color of the original avatar image.

Figure 44 shows a color image of an avatar based on the RGB colors calculated from

a model generated spectrum assuming a 2% melanosome level with a baseline volume

of blood throughout most of the face and three times the baseline level of blood in

the cheeks illuminated from the front with an equal energy spectrum lighting source.

The right frame of the figure shows the reflectance spectra used to derive the color

of the face and cheeks. There is a noticeable decrease in reflectance in the portion of

the cheek spectrum from 350nm to 600nm which is discussed below in Section 3.2.
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Figure 44: Left: Avatar with a 2% melanosome level and increased blood volume
in the cheek. Right: Corresponding reflectance spectra.

3.2 Results

3.2.1 Epidermal melanosomes. The melanin pigment is contained in cells

throughout the epidermis called melanosomes. Melanosome volume varies from 1.6

– 6.3% for a fair-skinned person, 11 – 16% for a moderately pigmented person, and

18 – 43% for a darkly pigmented person [35] (see Table 1). As the melanosome level
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increases, its effect on mean skin reflectance in the visible begins to decrease. This

point is demonstrated in Fig. 45 where a plot of the mean skin reflectance averaged

over 380-750nm is shown for melanosome levels ranging from 1%-43%.
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Figure 45: Mean skin reflectance from 380nm-750nm for melanosome levels ranging
from 1%-43%.

As stated previously, Fig. 44 (left) shows the avatar face with a 2% melanosome

level with the corresponding spectra for the forehead and cheek (right). Due to the

low melanosome level in this face, the blush of the cheeks is clearly visible. Figure 46

(top left) shows the results for 4% and 8% melanosome levels while Fig. 46 (bottom

left) shows the results for a 16% and 32% melanosome level for the avatar. It is clearly

evident that as melanosome level increases, the ability to differentiate the blush of the

cheek from the rest of the skin diminishes. A more detailed description of the effect

of hemoglobin on skin color is given in Sections 3.2.2 and 3.2.3. Figure 46 (right)

shows the effect that increasing the melanosome level has on skin reflectance. As

the melanosome level increases, reflectance decreases over the entire spectrum. This

decrease is reduced for larger versus smaller wavelengths.
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Figure 46: Top: Left and right halves of avatar correspond to 4% and 8%
melanosome levels respectively in the left frame with corresponding reflectance spec-
tra in the right frame. Bottom: Left and right half of avatar correspond to 16% and
32% melanosome levels respectively in the left frame with corresponding reflectance
spectra presented in the right frame.

3.2.2 Blood volume. Dilation of the vascular system is due to the regulation

of the nervous system and due to embarrassment or anger [75]. Nervous system

regulatory mechanisms that cause vasodilatation in the skin are typically caused by

the body’s attempt to maintain and regulate temperature. This can occur if the skin

temperature decreases below some acceptable value where the body is attempting to

warm the skin to prevent damage and also occurs when the body attempts to cool

the body down due to physical exertion.
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The typical cases of vasodilation are evocable. That is to say, it is rather simple

to force vasodilation as a response to cooling the body or heating extremities exposed

to cold. What may be more interesting to model is vasodilatation as a response to

embarrassment (due to a release of adrenaline). It most often appears in the face and

upper thorax region (upper chest), although the particular manifestation depends

on the individual. The centers of the cheeks for the avatars in Fig. 46 (left) show

the effect of tripling the blood volume in the skin, simulating vasodilation [23, 75].

Figure 46 (left) shows the reflectance differences as a result of different blood volumes

in the skin at different melanosome levels. As the blood volume increases in the

skin, the characteristic ω-shape at 585nm caused by oxygenated hemoglobin within

blood becomes more visible and the blue and green portions of the VIS are further

suppressed. An increased melanosome level in the skin suppresses the effect of the

chromophores of blood until their effect is negligible for a darkly pigmented person.

Trauma to the skin such as sunburn or an abrasion can result in increased blood

volume near the surface of the skin. The left of the avatar in Fig. 47 (left) shows the

result of increasing blood volume in the skin by a factor of 10 with a 2% melanosome

level. At this blood volume, the skin begins to take on a distinctly reddish tint. The

right frame of Fig. 47 shows the manifestation of increasing the blood volume on

the reflectance spectra. The characteristic ω-shape of oxygenated hemoglobin and

the suppression of the blue and green portions of the reflectance becomes even more

significant as the blood volume increases.

Constriction of blood vessels is regulated by the nervous system and can be

influenced by hormonal mechanisms [75]. Hormonal mechanisms are due to the release

of epinephrine and small amounts of norepinephrine which can be a sympathetic

nervous system response to physical exertions (e.g., exercise) [75]. One example of

this would be fear evoking the “fight-or-flight” response causing vasoconstriction in

the integumentary system to route blood to organs that need it.
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Figure 47: Top: Avatar with a 2% melanosome level. Left and right halves of
avatar correspond to normal blood volume and no blood volume respectively in the
left frame with corresponding reflectance spectra in the right frame. Bottom: Avatar
with a 8% melanosome level. Left and right halves of avatar correspond to normal
blood volume and no blood volume respectively in the left frame with corresponding
reflectance spectra in the right frame.

Death can also cause the blood volume in skin to decrease. For example, gravity

may cause blood to drain from the surface of the skin eliminating the pinkish hue

caused by hemoglobin. The right halves of the avatars in Fig. 47 (top left and bottom

left) demonstrate the absence of blood in the skin. Figure 47 (right) shows the skin

reflectance for skin with normal and increased blood volume and no blood in the skin.

Hemoglobin absorption in the blue and green portions of the VIS is no longer present

which gives the right side of the face a paler look.
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3.2.3 Hemoglobin oxygenation. Another important aspect of this work is

to characterize the color of skin based on the hemoglobin oxygenation level. This

has important implications in search and rescue applications providing some level of

triage.

Figure 48 shows the avatar with a 2% melanosome level. The left and right

halves of the avatar in Fig. 48 (left) have a hemoglobin oxygenation level of 75% and

0% respectively while Fig. 48 (right) shows the associated reflectance spectra. The

most obvious difference between the two sides of the avatar is in the cheeks which

have ten times the normal blood volume. The cheek on the left side has a reddish tint

while the cheek on the right side has the distinctly bluish tint associated with oxygen

deprivation. As indicated previously in the spectra of Fig. 46, as the melanosome

level increases, the ability to detect the presence of oxygenated and deoxygenated

hemoglobin decreases. In fact, when medical professionals try to assess oxygenation

levels of blood in a person, they usually place the device that measures oxygena-

tion (pulse oximeter) on the tip of the finger since it does not contain melanosomes.

Figure 48 (right) shows the skin reflectance spectra for skin with and without oxy-

genated hemoglobin. When hemoglobin in the blood is deoxygenated, skin has a

lower reflectance in the red portion of the VIS and the ω-shape at 585nm is no longer

present.

3.2.4 Illumination conditions. To demonstrate the effect of different lighting

conditions on the avatar, the face from Fig. 44 is illuminated with an equal energy

spectrum on the left side while the right side is illuminated with a blackbody at a

color temperature of 5250K (top), 4100K (middle), and 3200K (bottom). The 5250K

color temperature approximates sunlight, while 4100K would approximate a “cool”

incandescent light bulb and 3200K a “warm” incandescent light bulb. As the color

temperature drops, the face begins to take on an orange hue. Note that “warm”

light is associated with the lower color temperature which has a stronger red tint

than the “cool” light with the higher color temperature [87]. It is the red tint that is
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Figure 48: Left: Avatar with a 2% melanosome level. The left and right half of
the avatar have a hemoglobin oxygenation level of 75% and 0% respectively. Right:
Corresponding reflectance spectra.

associated by people with the “warmth” of the light and not the color temperature.

Modeling the incandescent bulbs and sunlight as blackbody radiators provides a good

approximation of their actual spectra. Color temperature is the metric used by many

manufacturers to describe the spectra of their light bulbs.

3.3 Discussion

This chapter presents an avatar where the integumentary system is created us-

ing the engineering hyperspectral model developed in this dissertation. The model

allows one to generate accurate colors for skin with varying epidermal melanosome

levels, blood volume, and hemoglobin oxygenation levels. Secondarily, it hints that hy-

perspectral imagers may potentially be used to unobtrusively characterize persons of

interest, say in a security or medical setting. In the latter case, conditions such as ane-

mia (which causes reduced hemoglobin), jaundice (which causes increased bilirubin),

or polycythemia (which causes increased hemoglobin) can be modeled and possibly

measured remotely.

It further hints that given we understand illumination conditions, material spec-

trum, and sensor response, we can model sensor output. This provides us a method
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for transforming sensor output into an estimated reflectance. This allows us to ap-

ply algorithms for remote sensing developed for use with reflectance, the topic of

Chapter IV.
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Figure 49: Avatars with a 2% melanosome level and increased blood volume in
the cheek. Left halves of the avatars are illuminated with an equal energy spectrum.
The right halves are illuminated with blackbody radiation at different color tempera-
tures. Corresponding reflectance radiance spectra presented in the right frame. Top:
5250K color temperature. Middle: 4100K color temperature. Bottom: 3200K color
temperature.
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IV. Application of Skin Reflectance Model for Remote

Sensing

4.1 Introduction

A thorough understanding of the optical properties of skin in the visible (VIS)

and near-infrared (NIR) allows one to accurately model skin’s reflectance spectra.

These optical properties include the indices of refraction of the air/skin interface, the

absorption coefficient spectra of the constituent components of skin (water, collagen,

melanin [24], hemoglobin [66], and others [59]) and skin’s scattering coefficient spectra.

An accurate model of skin reflectance allows one to identify spectral features for the

detection and characterization of skin.

In Section 4.2, we identify features of skin reflectance that can be used to de-

velop relevant exploitation algorithms. Section 4.3 presents our skin detection algo-

rithm while Section 4.4 presents our skin pigmentation level estimation algorithms.

Section 4.5 provides a description of the data used for our analysis. In Section 4.6

and Section 4.7, we present algorithm results for our skin detection and pigmentation

level algorithms respectively. Concluding remarks are offered in Section 4.8.

4.2 Measured and Modeled Skin Reflectance and Skin Confuser Mea-

surements

4.2.1 Observations from skin reflectance measurements. Reflectance mea-

surements were collected from the forearms of 24 living subjects with various pigmen-

tation levels and from several locations on 14 cadavers as described in Section 2.3.

Reflectance measurements from three different living people with different pigmen-

tation levels are presented in Fig. 50. Several important features can be noted in

the spectra. As pigmentation level increases, there is a decrease in reflectance for

skin throughout the VIS and NIR. However, since melanosome absorption decreases

as wavelength increases, the difference in reflectance between skin with different

amounts of melanosomes also decreases as wavelength increases [35]. Beyond 1300nm,

melanosome absorption is no longer significant and skin reflectance is approximately
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the same [5]. In the VIS, hemoglobin significantly affects the spectrum [43] accounting

for the dip in reflectance around 570nm as well as the lower reflectance in the VIS up

to 600nm. Water absorption becomes significant in the NIR where it accounts for the

decrease in reflectance for wavelengths beyond 1150nm, the local maxima at 1080nm

and 1250nm, and the local minima at 1200nm and 1400nm [5].
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Figure 50: Skin reflectance measurements of Type I/II skin (solid), Type III/IV
skin (dashed), and Type V/VI skin (dashed-dotted).

4.2.2 Human skin reflectance model output. Development of the skin detec-

tion and pigmentation level algorithms are based on the model developed in Chapter 2

rather than measured data. This is done because the model allows one to adjust var-

ious parameters, resulting in a wide variety of model generated estimated reflectance

signatures. With the full-spectrum of skin samples available, to include the hard-to-

come-by boundary conditions, we can determine theoretical bounds on the detector

statistic (i.e., the features we use in the detector) allowing us to better set thresholds

for our algorithm. Additionally, one can model other conditions of interest, including

an increase in blood volume causing blushing (vasodilation) and a decrease in blood

volume causing one to turn pale (vasoconstriction), as well as other abnormalities

(anemia, etc.). Most importantly, correspondence between the model theory and the

85



anticipated imager response allows us to extend the results to an arbitrary imager

and achieve good skin detection and pigmentation level estimation results. Figure 51

shows the modeled reflectance for skin from a healthy live person with a range of

possible melanosome levels in the epidermis.
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Figure 51: Modeled skin reflectance for different melanosome levels.

Although the model is not described in detail in this chapter, we introduce lim-

ited model notation in order to aide discussion. Let measured skin reflectance be

defined as ρ(λ) and estimated reflectance of the ith pixel in a hyperspectral image be

defined as ρ̂i(λ). The modeled reflectance of skin for a specified level of pigmenta-

tion and blood volume is defined by the function ρ̃(λ, D,H), where λ indicates the

dependency on wavelength, D is the reflectance of skin at 685nm (D = ρ(685nm)),

and H the amount of blood in the dermis where “normal” blood volume is defined

as H = 1, low blood volume by 0 < H < 1, and excessive blood volume by H > 1.

The selection of D (λ = 685nm) is based on work by Jablonski and Chaplin [33] who

identify melanin as the dominating chromophore specifically at that wavelength, and

use it in defining skin color for indigenous people from different regions of the world.

For the purpose of this dissertation, D is synonymous with pigmentation level. The
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parameters, λ, D, and H are used in developing the skin detection and pigmentation

level estimation capability presented in Section 4.3 and Section 4.4.

4.2.3 Skin confuser measurements. Understanding the reflectance of skin

aides in developing methods to differentiate it from other materials. Several materials

have colors similar to one of the wide varieties of skin-tones, some by design such as

mannequins and dolls [6], others by coincidence such as brown cardboard, wood,

leather, and some metals [1,38,84]. Depending on the image acquisition scenario, the

scene background may also be rich in skin-tones such as a desert environment which

contains naturally occurring materials with shades of brown, red, and yellow [95].

Measurements of different materials were collected with an ASD FieldSpec3r

Spectrometer. A comparison of Type I/II skin with the reflectance of a plastic flesh-

colored doll is shown in Fig. 52 (dashed and solid lines respectively). Like skin, the

reflectance of the flesh-colored doll rapidly increases as wavelength increases in the

VIS, hence the similar color. However, beyond 1200nm, the reflectance of the flesh-

colored doll is significantly higher than skin since the surface of the doll does not

contain water and thus does not exhibit skin’s water absorption characteristics in the

NIR. A comparison of the reflectance of Type III/IV skin with brown cardboard is

also demonstrated in Fig. 52 (dotted line and dashed-dotted line respectively). Note

that cardboard and Type III/IV skin exhibit an increase in reflectance as wavelength

increases in the VIS. Again, in the NIR, the reflectance of cardboard remains relatively

high while the reflectance of the skin is much lower due to water absorption. (Note

that we further measured wet cardboard, and it does not exhibit the same absorption

characteristics of skin.)

4.3 Skin detection algorithm

4.3.1 Features for skin detection and false alarm suppression. Any detection

algorithm is based on the quality of the received (reflected) signal (quality typically

defined as signal to noise ratio), which depends on the illumination source. In this
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Figure 52: Spectra of Type I/II and Type III/IV skin (dashed and dotted respec-
tively) and spectra of a plastic doll and brown cardboard (solid and dashed-dotted
respectively).

work, we are interested in detecting human skin under solar illumination. As an

example, the ambient radiance on a sunny day in Dayton, Ohio (scaled so its maxi-

mum value is one) is demonstrated in Fig. 53 (solid line). The irradiance of sunlight

received at the Earth’s surface depends on several factors: presence of cloud cover,

quantity and type of aerosols, humidity, and the solar angle (which dictates how much

atmosphere the light must travel through), to name a few. Regardless, there are a

few fundamental absorption features in the atmosphere in the NIR that should be

avoided for any detection algorithm using hyperspectral data. These are primarily

the bands associated with the absorption of water vapor nominally at 1400nm and

1900nm. The object of interest further imposes constraints on the spectra one should

use in detection. As an example, a measurement of the radiance under solar illumina-

tion, scaled by the same factor as the solar irradiance, reflected from Type I/II skin is

shown in Fig. 53 (dashed line). This solar illumination measurement was collected at

approximately noon on a partly cloudy day with the ASD FieldSpec3r Spectrometer

connected by a fiber optic cable to a cosine receptor. The local minima of the skin
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reflectance measurement corresponds to water absorption at approximately 950nm,

1150nm, and 1400nm (note that we do not consider spectra beyond 1600nm since it

is dominated by water absorbtion). As such, the location of the local minima and

maxima in the NIR of the reflected radiance of skin corresponds to the locations of

the local minima and maxima of skin reflectance.
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Figure 53: Solar irradiance in Dayton, OH on a sunny day scaled by the maximum
irradiance (solid) and the radiance spectra of Type I/II skin illuminated by sunlight
scaled by the same maximum irradiance (dashed).

Since these algorithms are based on skin reflectance, any imaged tissue needs

to be converted from radiance to reflectance. This can be accomplished using one

of several methods (we discuss two). The first is measuring the solar irradiance and

dividing the corresponding spectra by these. The second method involves a simple

linear regression using in-scene targets with known reflectance (the so-called Empirical

Line Method (ELM) [21]). Estimated reflectance of pixel i (ρ̂i(λ)) is computed via

ELM as shown in Eqn. (26) where Li(λ) is the apparent reaching radiance of pixel i,

ρ1(λ) and ρ2(λ) are the measured reflectances of two reference materials in the scene

and L1(λ) and L2(λ) are the apparent reaching radiances of the two reference materials

respectively. The variable Lm1 is the radiance of the first reference material and Lm2
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the radiance of the second reference material. The variable ρm1 is the reflectance of

the first reference material and ρm2 is the reflectance of the second reference material.

The variable ρ̂i is the estimated reflectance for the ith pixel [21]. For the case of the

hyperspectral camera used in this research, the values of Li, Lm1, and Lm2 can also

represent the raw values collected by the camera rather than an apparent reaching

radiance. However, Eqn. (26) still holds.

ρ̂i =

(
Li(λ)− Lm1(λ)ρm2(λ)−Lm2(λ)ρm1(λ)

ρm2(λ)−ρm1(λ)

)
(ρm2(λ)− ρm1(λ))

Lm2(λ)− Lm1(λ)
(26)

4.3.2 Normalized difference vegetation index (NDVI). By analyzing the

properties of skin reflectance from our skin model and considering the atmospheric

absorption characteristics relative to the model, we developed the normalized differ-

ence skin index (NDSI - note that this acronym also appears in the literature as the

normalized difference snow index [73]) and the normalized difference green-red index

(NDGRI). The former is for skin detection and the latter, as shown in Section 4.6, is

adequate for false alarm suppression. Both equations are similar to, and motivated

by, the Normalized Difference Vegetation Index (NDVI) [22] defined as:

αi =
ρ̂i(860nm)− ρ̂i(660nm)

ρ̂i(860nm) + ρ̂i(660nm)
(27)

where αi is the NDVI value for the ith pixel and as earlier, ρ̂i is the estimated re-

flectance for the ith pixel, and −1 ≤ αi ≤ 1. From the model, assuming the

model output is accurate and under the conditions that blood levels range from

zero to 2× “typical” volume and 1.5% ≤ melanin ≤ 43%, the NDVI for skin is

−0.00389 ≤ αi ≤ 0.50321. Knowledge of the bounds of the NDVI metric is one tool

that can be used in an accurate skin detection algorithm.
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The NDVI looks for a large difference in the reflectance between approximately

660nm and 860nm as this is characteristic of vegetation (due to chlorophyll absorption

in the red portion of the spectra and high scattering in the NIR). Our combined

NDSI/NDGRI-based skin detector also considers the difference for their respective

regions. As with the NDVI values for skin, the theoretical bounds on the NDSI and

NDGRI for skin are determined using our skin reflectance model.

4.3.3 Normalized difference skin index (NDSI). The NDSI is a function of

reflectance at 1080nm and 1580nm. The reflectance at 1080nm is the location of a

local maximum of the reflectance of skin in the NIR where melanosome absorption

dominates. Beyond 1080nm, water absorption in the skin becomes more significant

until a local minimum at approximately 1400nm. A stable yet low-valued reflectance

feature in skin spectra is chosen at 1580nm (beyond the atmospheric water vapor band

at 1400nm), in order to ensure the derivative is large between melanin-dominated

and water-dominated portions of the spectra. The model and measurements show

that the difference in reflectance for all skin types is fairly large at 1080nm versus

1580nm, which is consistent with reflectance measurements in the literature and in

this chapter. Furthermore, according to the measured (and known theoretical) solar

irradiance curves in Fig. 53, a significant amount of solar illumination power reaches

the surface of the earth ensuring a strong signal-to-noise ratio at 1580nm. The NDSI

is described as:

γi =
ρ̂i(1080nm)− ρ̂i(1580nm)

ρ̂i(1080nm) + ρ̂i(1580nm)
(28)

where γi is the NDSI value for the ith pixel and −1 ≤ γi ≤ 1 for all materials. Under

the same assumptions as stated above for the NDVI, NDSI values cover the range

0.65703 ≤ γi ≤ 0.76779 for skin pixels.
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4.3.4 Normalized difference red-green index (NDGRI). The colors green

and red encompass wavelength ranges of 495nm through 570nm and 620nm through

750nm respectively [28]. One can observe that human skin is more red than green, as

indicated by Fig. 54, which shows the extremes of skin based on melanosome content.

To eliminate common false alarm sources, such as heavy water bearing vegetation

(succulents) and water-bearing objects that are highly forward scattering (e.g., snow

and murky water), we invert the red-green relationship using the NDGRI. The bands

are chosen to correspond to the red-green channels in the red-green-blue color space

and are 660nm and 540nm respectively. The NDGRI is described as:

βi =
ρ̂i(540nm)− ρ̂i(660nm)

ρ̂i(540nm) + ρ̂i(660nm)
(29)

where βi is the NDGRI value for the ith pixel and −1 ≤ βi ≤ 1. Under the same

assumptions as stated above for the NDVI, NDGRI values cover the range −0.54079 ≤
βi ≤ −0.06153 for skin pixels.

4.3.5 Observation of feature values using modeled and measured data. Ta-

ble 11 provides a list of NDSI, NDGRI, and NDVI values for different materials

including skin with different pigmentation levels, skin confusers, and typical back-

ground material in a rural scene. As one would anticipate, materials with significant

water content, such as vegetation and skin, have the highest NDSI values. Also note

that the NDSI values for the darkest skin can be higher than values for vegetation.

Vegetation has the highest NDVI values and objects that are green have the highest

NDGRI values. Several examples of modeled skin reflectance for various levels of

skin pigmentation (including the extremes), and the relevant wavelengths used for

the NDSI, NDVI, and NDGRI algorithms are provided in Fig. 54.

From Table 11, it is clear that either the NDVI or NDGRI can be used to

suppress false alarms when used in conjunction with the NDSI to identify skin. If
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Figure 54: Modeled skin reflectance for different melanosome levels marked with
colored solid lines. Pertinent spectral components used for each algorithm are marked
with vertical dashed lines: (660,860)nm for NDVI, (1080,1580)nm for NDSI, and
(540,660)nm for NDGRI.

one is searching for fair to moderately-pigmented persons in a scene with a significant

amount of vegetation, the NDVI algorithm can be an effective method for filtering

out water-rich vegetation. However, darkly pigmented people have a high NDVI

value and may be incorrectly discarded by an NDVI threshold set too low. If one

is searching for people in an urban environment, the NDGRI can filter out pixels

that are more green than red in a scene. However, the NDGRI would have greater

difficulty identifying vegetation under low signal-to-noise ratio conditions. This is

due to the fact that NDVI>NDGRI for vegetation. We explore the use of NDVI

and NDGRI in suppression of false alarms when combined with the NDSI for skin

detection in the following sections. Specifically, we present a rules-based detection

scheme and demonstrate the differences in false alarm suppression using both the

NDVI and NDGRI.

4.3.6 Rules-based skin detection algorithms. To identify a pixel as skin

is a two step process. The first step is for the pixel to cross the NDSI threshold.
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Table 11: NDVI, NDSI, and NDGRI values for different materials.

Material NDVI NDSI NDGRI

Fair Skin 0.04 0.77 -0.25

Darkly Pigmented Skin 0.51 0.66 -0.34

Grass 0.88 0.53 0.37

Leaf 0.9 0.27 0.41

Doll 0.04 0.24 -0.28

Paper Bag 0.27 0.15 -0.27

Cardboard 0.3 0.14 -0.33

Red Brick -0.01 -0.01 -0.47

Soil 0.37 -0.1 -0.18

This means there is sufficient difference between the estimated reflectance of the pixel

at 1080nm and 1580nm. The next step is to use either the NDVI or NDGRI to

eliminate potential skin confusers. A rules-based skin detector based on NDVI and

NDSI is defined as:

Si =





1 if a1 ≤ αi ≤ a2 and c1 ≤ γi ≤ c2

0 otherwise
(30)

where Si = 1 when the ith pixel is skin and Si = 0 otherwise. Here, a1 and a2 are

the minimum and maximum NDVI thresholds for skin respectively and c1 and c2 are

the minimum and maximum values NDSI thresholds for skin respectively. Similarly,

a rules-based skin detection based on NDGRI and NDSI is defined as:

Si =





1 if b1 ≤ βi ≤ b2 and c1 ≤ γi ≤ c2

0 otherwise
(31)
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where b1 and b2 are the minimum and maximum NDGRI thresholds for skin respec-

tively.

4.4 Estimating reflectance of skin at 685nm as well as the melanosome

content of the epidermis

Estimating melanin level of those pixels detected as skin is based on several

key skin reflectance features. As seen in Fig. 55, when melanin level increases, the

reflectance in the region between 650nm and 950nm decreases and the reflectance

at 1080nm does not undergo a significant change. The near-infrared melanosome

index (NIMI) shown in Eqn. (32) takes advantage of this relationship providing a

mechanism to classify skin as one of the Fitzpatrick skin types. As the melanosome

level increases, N(λ) decreases for values of λ between 650nm and 950nm where N(λ)

is used to estimate the reflectance of skin at 685nm. The reason for the selection

of 685nm is discussed in Section 4.2.2. Although the reflectance of skin at 685nm

can be read directly from a reflectance measurement, there are circumstances where

this might not be possible. One example of this is only having reflectance spectra

measurements in the NIR. Another example is having a reflectance value derived from

a hyperspectral image that has the incorrect scale due to the method used to estimate

reflectance. For both cases, the reflectance spectra can still be used to estimate the

reflectance of skin at 685nm as will be shown in the rest of this section.

N(λ) =
ρ(λ)

ρ(1080nm)
(32)

NIMI values for the model, Ñ(λ,D), are based on the skin reflectance model

using Eqn. (33) for each wavelength between 650nm and 950nm over the full range

of melanin levels, D. The reason this range of λ values is analyzed is the flexibility

it offers. Different types of sensors will have different capabilities to collect at this

range of wavelengths. The value of λ to select for the NIMI algorithm is the lowest
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Figure 55: Modeled skin reflectance for different pigmentation levels with locations
of NIMI algorithm wavelengths identified with vertical dashed lines at 685nm, 850nm,
and 1080nm.

wavelength between 650nm and 950nm and depends on the sensor response. Figure

56 shows D versus Ñ(λ,D) for different values of λ. The trend is to have a greater

dynamic range of Ñ(λ,D) values for shorter wavelengths.

Ñ(λ,D) =
ρ̃(λ,D, 1)

ρ̃(1080nm, D, 1)
(33)

Once the NIMI values have been calculated for a specific wavelength λ, they

can be transformed into an approximate value of D. This is done by performing a

linear regression of a second order polynomial where an estimate of D is a function

of Ñ(λ,D). Equation (34) shows the polynomial where coefficients were generated

for each wavelength, λ, between 650nm and 950nm. Figure 57 shows a graph of the

coefficients.

96



0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Modeled NIMI values (Ñ(λ, D))
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Figure 56: Ñ(λ,D) values for values of λ = {685, 850, 950}nm versus skin re-
flectance at 685nm (D).

D ≈ S(λ)Ñ(λ,D)2 + M(λ)Ñ(λ,D) + B(λ) (34)

Although the coefficients were created from values generated by the model,

Eqn. (35) is the estimate of skin reflectance at 685nm (D) based on the value of

N̂i(λ) which is derived from the estimated reflectance of the ith pixel, ρ̂i(λ), as shown

in Eqn. (36). The assumption is made that the modeled reflectance and estimated

reflectance from the hyperspectral image are similar enough that the coefficients de-

rived from the modeled data can be used with N̂i(λ) to calculate D for the image skin

pixels.

D ≈ S(λ)N̂i(λ)2 + M(λ)N̂i(λ) + B(λ) (35)
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Figure 57: Regression coefficients for the NIMI algorithm for wavelengths between
650nm and 950nm.

N̂i(λ) =
ρ̂i(λ)

ρ̂i(1080nm)
(36)

The values of D for λ = 685nm and λ = 850nm can be calculated from Eqn. (37)

and Eqn. (38) respectively where the coefficient values come from the linear regression

of the modeled NIMI values. The results of the regression of D versus Ñ(λ, D) for

λ = 685nm and λ = 850nm are shown in Fig. 58. This figure plots D versus N(λ)

for λ = 685nm (squares) and λ = 850nm (filled circles) for reflectance measurements

collected from the forearms of living people.

D = 0.071314 N(685)2 + 0.50862 N(685)− 0.060247 (37)
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D = 1.692 N(850)2 − 1.8351 N(850) + 0.5906 (38)
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Figure 58: Regressed N(λ) values for λ = 685nm (solid, square) and λ = 850nm
(dashed, circle) versus D (skin reflectance at 685nm).

When estimating D from the estimated reflectance of skin pixels from a hyper-

spectral image, Eqn. (37) and Eqn. (38) can be used with N̂i(λ) instead of N(λ). The

coefficients for these two equations will be used to estimate D for the hyperspectral

test image described in the next section.

Based on the skin reflectance model, a linear regression is performed where

melanosome percentage is a function of the variable D. Equation (39) shows the

results of the linear regression of the fifth order polynomial where M is the melanosome

percentage assuming a 60µm thick epidermis.

M = −35.649D5 + 74.283D4 − 62.223D3 + 27.263D2 − 7.0446D + 0.99453 (39)
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4.5 Hyperspectral test images

Data used to test the skin detection and melanosome estimation algorithms was

collected with the SpecTIR HST3 Hyperspectral Imager [36]. The HST3 collects data

in the range of 400nm – 2500nm. The spectral bands are nominally 10nm wide in the

VIS and 7nm wide in the NIR. The full width half maximum (FWHM) of each of the

bands is approximately 8nm and 12nm respectively. Radiance spectra from the image

cube is transformed into estimated reflectance using ELM described previously.

To test the rules-based skin detection algorithm, an image was collected with

skin color confusers and skin with various levels of pigmentation as shown in Fig. 59

(top). The image contains a flesh-colored doll, a piece of cardboard, and a red brick.

These objects were selected because of false detections they caused in skin detection

algorithms based on color imagery. Other color confuser’s include a leather boot and

several pieces of wood. These objects were selected because their color was similar to

some shades of skin. A branch from a conifer (from the yew family) is included in the

scene as it is known to have a high NDSI value. The scene is a suburban environment

with houses, streets, sidewalks, trees, typical residential yards with grass, bushes,

bark, and other assorted materials. Portions of the reference panels used to perform

the ELM are shown in the bottom right portion of the figure. Figure 59 (bottom)

shows the corresponding pixels manually identified as skin.

Due to the noise inherent in the system/environment and the fact that the

bands identified for our algorithms do not line up with the HST3 band centers, the

NDVI, NDSI, and NDGRI algorithms were modified to accommodate the available

spectra. The algorithms were implemented with the mean of the estimated reflectance

of the three HST3 bands closest to the algorithms’ band centers. For example, the

estimated reflectance at 540nm used for the NDGRI algorithm was implemented using

the mean of the estimated reflectance from the HST3 bands centered at 531.373nm,

542.741nm, and 554.075nm. The band centers for the HST3 estimated reflectance
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Figure 59: Top: Color image of suburban test scene. The scene contains people
with different skin colors as well as several potential false alarm sources. Bottom:
The skin truth pixels.

that correspond to the band centers of the skin detection and melanosome estimation

algorithms described earlier are provided in Table 12.

4.6 Results of the rules-based skin detector

The essential property of the NDSI algorithm is that skin is one of the few ma-

terials with a high reflectance at 1080nm and a low reflectance at 1580nm. Figure 60

(top) shows the estimated reflectance of the scene with confusers at 1080nm while

Figure 60 (bottom) shows the estimated reflectance at 1580nm. Most of the materials

in the image have a similar reflectance at both wavelengths. The two major excep-

tions to this are skin throughout the image and the bush at the bottom center of the
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Table 12: HST3 image bands used to implement skin detection and melanosome
estimation algorithms.

Wavelength Band 1 Band 2 Band 3

540nm 531.373nm 542.741nm 554.075nm

660nm 648.676nm 660.268nm 672.004nm

685nm 743.138nm 754.703nm 766.490nm

850nm 837.50nm 849.047nm 860.889nm

860nm 849.047nm 860.889nm 872.767nm

1080nm 1069.910nm 1078.060nm 1086.290nm

1580nm 1570.830nm 1579.030nm 1587.270nm

image. For both materials, the reflectance is much greater at 1080nm than 1580nm

due to the fact that both materials contain significant amounts of water which is

highly absorbing at 1580nm.

Application of the NDSI algorithm on the test scene from Fig. 59 (top) is shown

in Fig. 61. The portions of the image with the highest NDSI values are skin and the

bush at the bottom center of the image. The cloth at the bottom center of the image

has a moderately high NDSI value. The rest of the image has very low or negative

NDSI values. This includes the flesh-colored objects such as the doll, leather boot,

cardboard, and wood at the bottom right of the image.

A receiver operating characteristic (ROC) curve for the NDSI-only detector is

shown in Fig. 62, and was generated by adjusting 0 ≤ γ ≤ 1. Two operating points

are selected for comparison: first is a PD = 0.95, second is a PFA = 0.0005. A

threshold of γ = 0.314 gives a PD = 0.95 with a PFA = 0.0156. The corresponding

detection image for γ = 0.314 is shown in Fig. 63 (top). The algorithm does an

excellent job of detecting skin of all colors, but has difficulty with skin under the chin

of the person in the center of the due to the low illumination levels at that location.

The algorithm also has difficulty with false detections of the bush and the strongly

illuminated clothing at the bottom center of the image. A threshold of γ = 0.589

gives a PFA = 0.0005 with a PD = 0.413. The corresponding detection image for
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Figure 60: Suburban test scene with potential false alarm sources. Top: Image at
1080nm and Bottom: Image at 1580nm (bottom).

γ = 0.589 is shown Fig. 63 (bottom). The false detections from the bush and the

clothing have been eliminated, however, the PD for this threshold is poor.

To reduce false alarms caused by vegetation, the NDVI can be used to eliminate

pixels detected as skin that also have a high NDVI value. Application of the NDVI

algorithm to the test scene is demonstrated in Fig. 64. The Fitzpatrick Skin Types II,

III, and IV skin pixels have NDVI values β ≤ 0.3 while Types V and VI have NDSI

values as high as β = 0.55. This limits the ability of the NDVI algorithm for use in

skin detection algorithms when searching for darkly pigmented skin.

Three ROC curves shown in Fig. 65 are generated by adjusting the NDSI thresh-

old γ while holding the NDVI constant at one of three values: α = {0.5, 0.6, 0.7}
(solid, dashed, dashed-dotted respectively). An NDVI threshold of β = 0.5 results in
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Figure 61: Application of the NDSI algorithm to the suburban test scene with
potential false alarm sources.
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Figure 62: The receiver operating characteristic (ROC) curve for skin detection
varying NDSI threshold 0 < γ < 1.

a maximum PD ≈ 0.9. This is due to the misidentification of skin pixels with a high

level of pigmentation (Type V/VI skin) as vegetation. Increasing the NDSI threshold

to β = 0.7 increases the maximum PD ≈ 0.96. However, PD performance suffers

for PFA < 0.0007. An NDVI of α = 0.6 has approximately the same maximum PD
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Figure 63: Top: Detection Image with NDSI threshold γ = 0.314 with PD = 0.95
and corresponding PFA = 0.0156. Bottom: Detection Image with NDSI threshold
γ = 0.589 with PFA = 0.0005 and corresponding PD = 0.413.

as an NDVI threshold of α = 0.7 and better performance across the board over an

NDVI threshold α = 0.5. Figure 66 shows a scatter plot of NDSI values versus NDVI

values for both skin and non-skin pixels. NDSI thresholds of γ = 0.259 and γ = 0.467

are also displayed on the figure along with a NDSI threshold of γ = 0.6. Figure 67

(top) shows the result of applying both NDVI and NDSI to the detection problem

per Eqn. (30) for an NDVI threshold of α = 0.6 and an NDSI threshold of γ = 0.259

(yielding a 95% detection) while Fig. 67 (bottom) shows the result for α = 0.6 and

γ = 0.467 (yielding a 0.5% false alarm rate). Given a fixed NDVI of α = 0.6, an NDSI

of γ = 0.259 results in a PD = 0.95 with a PFA = 0.015, and an NDSI of γ = 0.467

results in a PFA = 0.0005 with a PD = 0.766.
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Figure 64: Application of NDVI to the suburban test scene with possible false alarm
sources.
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Figure 65: ROC curves for the rules-based skin detection algorithm per Eqn. (30)
varying NDSI with fixed values of NDVI: α = {0.5, 0.6, 0.7} (solid, dashed, dashed-
dotted respectively).

False detections can be reduced by incorporating the NDGRI algorithm with

the NDSI algorithm. The NDGRI algorithm is used to identify pixels that are more

green than red. Figure 68 shows the application of the NDGRI algorithm to the test
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Figure 66: Scatter plot of NDSI versus NDVI values for skin and non-skin pix-
els. Number of pixels analyzed was decimated for ease of viewing. Skin detection
algorithm with NDSI threshold of 0.259 (solid) and NDVI threshold of 0.6 (dashed-
dotted) has PD = 0.95 and corresponding PFA = 0.015. Skin detection algorithm
with NDSI threshold of 0.467 (dashed) and NDVI threshold of 0.6 (dashed-dotted)
has PD = 0.766 and corresponding PFA = 0.0005.

scene. In general, skin in the scene has an NDGRI value β < −0.3 while vegetation

has a value β > 0.

Three ROC curves corresponding to varying NDSI threshold γ at three NDGRI

values of β = {−0.2,−0.05, 0.1} are shown in Fig. 69 (solid, dashed, dashed-dotted

respectively). For a threshold of β = −0.2, a maximum PD ≈ 0.67 occurs. The reason

for the low PD is some fair skin pixels may be insufficiently more red than green to

cross this NDGRI threshold. For a threshold of β = 0.1, a maximum PD = 0.97 with

a resultant PFA = 0.01 occurs. A compromise may be to use an NDGRI threshold of

β = −0.05 with PD = 0.95 and PFA < 0.0065, which has better overall performance

than when β = −0.2 or β = 0.1. Figure 70 shows a scatter plot of NDSI values versus

NDGRI values for both skin and non-skin pixels. NDSI thresholds of 0.286 and 0.455
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Figure 67: Application of NDSI and NDVI with thresholds for skin detection. Top:
NDSI threshold of γ = 0.259 and NDVI threshold of α = 0.6 for a PD = 0.95 with
a corresponding PFA = 0.015. Bottom: NDSI threshold of γ = 0.467 and NDVI
threshold of α = 0.6 for PFA = 0.0005 with a corresponding PD = 0.766.

are also displayed on the figure along with a NDGRI threshold of -0.05. The skin

detection results on our test image generated by fixing β = −0.05 and selecting an

NDSI threshold where PD = 0.95 (with a corresponding PFA = 0.006) is shown in

Fig. 71 (top). Under the same fixed value of β = −0.05 and choosing the operating

point where PFA = 0.0005 (with a corresponding PD = 0.785), the resultant detection

image is shown in Fig. 71 (bottom).
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Figure 68: Application of NDGRI to image of suburban test scene with potential
skin color confusers. Colorbar shows the representative NDGRI values.
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Figure 69: ROC curves for the rules-based skin detection algorithm per Eqn. (31)
varying NDSI with fixed values of NDGRI: β = {−0.2,−0.05, 0.1} (solid, dashed,
dashed-dotted respectively).

4.7 NIMI remote sensing

The selection of which λ value to use for estimating skin reflectance at 685nm

is based on the capabilities of the sensor used to collect the hyperspectral image.

Smaller values of λ have a greater dynamic range for the NIMI values resulting in a
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Figure 70: Scatter plot of NDSI versus NDGRI values for skin and non-skin pixels.
Number of pixels analyzed was decimated for ease of viewing. Skin detection algo-
rithm with NDSI threshold of 0.286 (solid) and NDGRI threshold of -0.05 (dashed-
dotted) has PD = 0.95 and corresponding PFA = 0.006. Skin detection algorithm with
NDSI threshold of 0.455 (dashed) and NDGRI threshold of -0.05 (dashed-dotted) has
PD = 0.785 and corresponding PFA = 0.0005.

more accurate estimation of the skin reflectance at 685nm if significant noise is present.

However, the response of the sensor at shorter wavelengths must also be taken into

consideration. Better results can be expected using the smallest wavelength between

650nm and 950nm assuming the sensor has a good response at that wavelength.

The results of the skin reflectance at 685nm estimation algorithms for the test

image in Fig. 72 (top) for a value of λ =685nm Fig. 72 (middle) and λ =850nm

(Fig. 72 bottom). The colors of the colorbar on Fig. 72 (bottom) represent the skin

color associated with the skin reflectance at 685nm numerical values on the bar. The

estimation of skin reflectance at 685nm appears reasonable. The skin reflectance at

685nm estimated for λ =685nm should be the same as λ =850nm. However, as λ

increases, the dynamic range for skin reflectance at 685nm estimation is reduced (as
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Figure 71: Application of NDSI and NDGRI with thresholds for skin detection.
Top: NDSI threshold of γ = 0.286 and NDGRI threshold of β = −0.05 with PD =
0.95 and corresponding PFA = 0.006. Bottom: NDSI threshold of γ = 0.455 and
NDGRI threshold of β = −0.05 with PD = 0.785 and corresponding PFA = 0.0005.

shown in Fig. 56). As a result, the results in Fig. 72 (bottom) have a reduced accuracy

in pigmentation level compared to the results in Fig. 72 (middle).

The next step in determining the accuracy of the NIMI algorithm is to make

a comparison between measured and estimated skin reflectance at 685nm. The ASD

FieldSpec3r Spectrometer was used to collect reflectance measurements at 685nm of

the left forearms of seven subjects. The NIMI algorithms were then used to estimate

the mean reflectance at 685nm of a 3X3 pixel section of the center of the left and right

forearms of each of the subjects. Table 13 shows a comparison between the measured

reflectance at 685nm for the left forearms and the NIMI algorithm results for the left
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Figure 72: Top: Test scene with seven subjects of interest covering the range of
Fitzpatrick skin types. Middle: Skin reflectance at 685nm estimate based on estimated
reflectance of skin pixels at λ =685nm. Bottom: Skin reflectance at 685nm estimate
based on estimated reflectance of skin pixels at λ =850nm.

and right forearms of the seven subjects. There is a good correspondence between

the measured and estimated results. The subject number from the first column of

Table 13 corresponds to the number on the torso of each of the individuals in Fig. 72

(top). Measured skin reflectance for the seven subjects at 685nm ranged from 0.14 to

0.64. For λ = 685nm, the mean absolute error between measured forearm reflectance
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Table 13: Estimation of reflectance at 685nm of subjects’ forearms in the suburban
test image shown in Fig. 59. Values calculated using NIMI for λ = 685 and λ = 850

λ = 685 λ = 850

Subject Reflectance Left Right Left Right

1 0.25 0.25 0.24 0.25 0.26

2 0.19 0.20 0.18 0.22 0.22

3 0.33 0.28 0.30 0.34 0.34

4 0.14 0.15 0.14 0.14 0.12

5 0.64 0.64 0.63 0.55 0.61

6 0.35 0.30 0.24 0.32 0.35

7 0.57 0.68 0.59 0.58 0.54

at 685nm and that estimated by the NIMI algorithm is 0.03. For λ = 850nm, the

mean absolute error is 0.021. The mean of these two results is 0.026.

The values shown in Table 13 are then transformed using Eqn. (39) into melanosome

percentages. Limitations are placed on the transformation such that the lowest and

highest melanosome levels are 1% and 43% respectively. The results of the transfor-

mation are shown in Table 14. According to Table 1, subjects 1, 2, and 4 fall in the

category of darkly pigmented (Type V/VI) while subjects 3 and 6 fall in the upper

range of moderately pigmented (Type III/IV). Subjects 5 and 7 fall in the category

of fairly pigmented (Type I/II).

4.8 Discussion

Algorithms and results for the detection of skin and estimation of pigmentation

level in hyperspectral images were presented in this chapter. The algorithms were

based on skin reflectance measurements and results from a reflectance model devel-

oped for this research. Images used to test the algorithm contained skin with a wide

variety of melanosome levels and a variety of skin-color confusers. The detection of

skin was conducted with four bands of data in the VIS and NIR. With the proper

selection of image bands and detector thresholds, the skin detection algorithm had
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Table 14: Estimation of melanosome levels of subjects’ forearms in the suburban
test image shown in Fig. 59.

λ = 685 λ = 850

Subject Melanosome Level Left Right Left Right

1 0.22 0.22 0.23 0.22 0.21

2 0.30 0.29 0.32 0.26 0.26

3 0.14 0.19 0.17 0.14 0.14

4 0.40 0.38 0.40 0.40 0.43

5 0.01 0.01 0.01 0.02 0.01

6 0.13 0.17 0.23 0.15 0.13

7 0.01 0.01 0.01 0.01 0.02

a PD as high as 0.95 with a PFA of 0.003. Once pixels were identified as skin, the

skin melanosome-estimation algorithm was able to successfully determine the skin’s

melanosome content when compared with color imagery of the test scene. The mean

absolute error between data measured by the ASD FieldSpec3r Spectrometer and

data estimated by the NIMI algorithm was only 0.026 where the reflectances of the

individuals at 685nm ranged from 0.14 to 0.64. This is sufficient to correctly categorize

skin based on the Fitzpatrick skin types per Table 2.
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V. Conclusions and Future Work

5.1 Introduction

We end our description of this research with conclusions and a discussion of

current and future work. Current work includes improvements in the skin detection

algorithm and the development of a camera system for real-time skin detection and

melanosome-estimation/skin color classification. Future work includes the develop-

ment of classification algorithms for the amount of blood in skin to assist in deter-

mining psycho-physiological responses, and an investigation of how the skin detection

algorithm interacts with animal skin.

5.2 Conclusions

For this research we developed a skin reflectance model in the visible (VIS) and

near-infrared (NIR) based on the Kubelka-Munk and Fresnel equations. This multi-

layer reflectance model incorporates optical coefficients documented in the current

literature and measured in the laboratory. Optical coefficients derived from measure-

ments in the laboratory include the absorption coefficient of collagen and an estimate

of the reduced scattering coefficient of skin. The model uses six parameters (epi-

dermal melanosome level, dermal blood level, hemoglobin oxygenation percentage,

dermal thickness, collagen level, and subcutaneous tissue reflectance) to simulate the

wide variety of skin reflectances. These six parameters can be adjusted to match

measured skin reflectances with a high degree of accuracy.

The next part of this research uses the skin reflectance model to determine the

output of a generic red-green-blue (RGB) color sensor recording skin with various

types of illumination. Modeled skin reflectance and blackbody illumination sources

were combined to form a reflected radiance. This reflected radiance spectrum was then

transformed into the RGB color space. We successfully applied this transformation

to a hyperspectral image of an avatar with different skin parameters under different

illumination sources.
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In the last part of this research, we developed skin detection and melanosome

level estimation algorithms for use with remotely sensed hyperspectral data. We ap-

plied both algorithms to a suburban scene which included people possessing a variety

of pigmentation levels and various skin color confusers. We were able to successfully

detect skin with a high probability of detection (PD) and a low probability of false

alarm (PFA). The results of the melanosome level algorithm also compare favorably

with an ASD FieldSpec3r Spectrometer measurements of skin in the scene.

There are several unique contributions of this research. First, the absorption

coefficient of collagenous protein was measured which is essential for determining the

total absorption coefficient of skin. Although the absorption coefficient of collagen

has been measured by others [86, 90], our method was novel in that we measured

the absorption properties of nearly pure collagen that did not possess the scattering

properties of more typical powdered collagen.

Second, is the measuring of skin’s reduced scattering coefficient. Given accu-

rate knowledge of the amount of absorption in the skin tissue and the reflectance

of subcutaneous tissue, this new scattering coefficient allowed us to create a skin re-

flectance model with an overall root mean square error of approximately 2% compared

to measurements. Although this measurement of the reduced scattering coefficient is

significantly different than that measured or estimated by others [35,72,78], we show

that it is plausible as it was an essential element in creating an accurate model of skin

reflectance based on the assumptions made in this research.

Third, the multi-layer skin reflectance model incorporated all the possible re-

flectance and transmittance paths for light propagating through the skin tissue. Other

models only allow for the primary reflectance and transmittance paths of light through

the skin tissue [16]. Incorporating all the reflectance and transmittance paths allows

for an increase in the number of layers used in the model without a loss of fidelity.

Fourth, sensor response was incorporated with the skin reflectance model to

simulate the result of various psycho-physiological responses on the sensor. Knowledge
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of the lighting conditions in the environment, sensor response, and skin reflectance

for various psycho-physiological responses can allow the development of algorithms

for detecting psycho-physiological responses for a given sensor.

Fifth, the Normalized Difference Skin Index (NDSI) and Normalized Difference

Red Green Index (NDGRI) were developed for use in algorithms that detect skin with

a high PD and a low PFA. The NDSI and NDGRI algorithms are computationally

inexpensive and easy to implement with commercial off the shelf equipment. A com-

bination of the NDSI and NDGRI had a PD as high as 0.95 with a PFA of 0.006 within

a typical suburban scene with a wide variety of skin colors.

Finally, an accurate method for remotely determining the pigmentation level of

skin in hyperspectral images using the near-infrared Melanosome Index (NIMI) algo-

rithm was demonstrated. The NIMI algorithm was applied to a hyperspectral image

containing a wide variety of skin pigmentation levels to determine the reflectance of

skin pixels at 685nm where those values varied from 0.14 to 0.64. The mean error for

the algorithm results was 0.007 while the standard deviation of the error was 0.037.

What makes this method unique is that the assessment of skin color is done using data

from the NIR rather than the VIS. This method is also unique in that it is flexible

enough to be used with a wide variety of NIR sensors rather than constrained to a

specific sensor type.

5.3 Current work

5.3.1 Improved detection algorithm. Our current skin detection algorithm

calculates the NDSI and NDGRI values for an image and then applies thresholds for

each metric based on the desired PD and PFA performance. An area defined as rang-

ing from -1 to 1 for the x-axis and -1 to 1 for the y-axis can define all the possible

combinations of NDSI and NDGRI values with the x coordinate defining the NDGRI

value and y coordinate defining the NDSI value. The NDSI and NDGRI thresholds

then define a rectangular region that goes from -1 to the NDGRI threshold along

the x direction and from the NDSI threshold to 1 in the y direction. Adding an
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upper threshold for the NDSI value and a lower threshold for the NDGRI value can

reduce the area within the NDSI/NDGRI space which would improve the PFA with-

out significantly degrading PD. We are currently investigating traditional detection

methods for the NDGRI/NDSI pair. The key to determining all of these thresholds

is an analysis of materials with spectra similar to skin. Examples of materials we are

investigating include vegetation, snow, mud, and other water rich materials.

5.3.2 Two camera skin detection system. We are currently developing a

skin detection system based on the NDSI algorithm [58] which operates at approxi-

mately 20Hz. This project was part of a special study for three masters students to

demonstrate the practicality of implementing the skin detection algorithms for use in

the field. Two Goodrich NIR cameras are co-located with both having a connection

to an image acquisition card on a computer. As shown in Fig. 73, one camera has a

filter centered at 1050nm in front of its lens while the other has a filter centered at

1550nm.

Figure 73: Goodrich near-infrared cameras with optical filters at 1050nm and
1550nm (approximately the specified NDSI wavelengths of 1080nm and 1580nm) with
bandwidths of 10nm and 12nm respectively. This demonstrates the flexibility of the
methodology developed in this dissertation.
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For initial tests of the system, all of the blinds in the laboratory were opened to

allow sunlight to enter the room. The cameras were placed in front of the windows

and the test subject was placed across the laboratory in front of the cameras. For

demonstration purposes, the test subject held the monitor that displayed the results

of the skin detection algorithm. This allowed the display of the skin detection results

to be co-located with the skin within the scene. Figure 74 shows the test subject and

the skin detection results on the monitor while Fig. 75 shows a close in view. Accurate

detection results require accurate registration of the two cameras. However, since the

pair of cameras do not share a single set of optics, they can only be registered to one

depth of view. Objects outside the depth of view may not be properly registered.

Because of this, there are some false detections at edges within the scene such as the

door’s edge or the monitor’s edges.

Figure 74: Skin detection shown on monitor for the two NIR skin detection cam-
era/system with cameras pointing at the subject.

5.3.3 Monocular skin detection system. The solution to the stereo optics

problem is to use a single set of optics for both cameras. To accomplish this, the

two cameras will be integrated with a dichroic mirror and a single lens. Light enters

through the single lens and is then split into two bands using a dichroic mirror. The
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Figure 75: Close in view of skin detection shown on monitor for cameras pointing
at the subject. The false detections due to depth of field problems are clearly evident.

dichroic mirror will allow light below a specified wavelength to pass through to one

camera while reflecting light above the specific wavelength to the second camera. This

will allow the entire scene to be registered for all depths-of-view.

5.3.4 Four camera solution. A single set of optics, three dichroic mirrors,

and four cameras can be used to create a real-time skin detection system that also

reduces false alarms and estimates pigmentation level of pixels identified as skin. Once

light exits the single set of optics, it is split by a dichroic mirror at approximately

1000nm. Wavelengths above 1000nm are further split into two bands by another

dichroic mirror for skin detection. The light from the first dichroic mirror below

1000nm is further split into light above and below 700nm by a third dichroic mirror.

The light below 700nm is received by a color camera where the light is split into its

RGB channels. Information from the color camera is used to identify false detections

using a modified version of the NDGRI. The light above 700nm is the second band

used for melanosome estimation. This system is currently being produced as a masters

thesis as a result of this dissertation.
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5.4 Future work

5.4.1 Improving skin reflectance model. There are multiple areas where

the skin reflectance model can be improved. First, we can incorporate additional

layers into the model by subdividing the subcutaneous tissue. Subcutaneous tissue

can be divided into layers of fat, striated muscle, and possibly bone or cartilage

where the optical properties of each of these materials can be measured with an ASD

FieldSpec3r Spectrometer. This would be an improvement over using the character-

istic subcutaneous spectra with a scale factor. Another area for improvement is the

characterization of melanosome scattering. Both the amount and size of melanosomes

in the epidermis vary depending on the pigmentation level of skin. Accounting for

melanosome scattering would increase the accuracy of the model in the NIR for skin

with a high melanosome level. Finally, using different scattering coefficients for the

epidermis, papillary dermis, and reticular dermis would improve model accuracy. All

three layers have different densities and sizes of collagen fibers which is the primary

source of scattering in skin tissue. For simplicity at the cost of accuracy, our model

used the same scattering coefficient spectra for all layers of skin (similar to the existing

literature).

5.4.2 Remote sensing for triage. After developing algorithms for detecting

skin and determining its pigmentation level, the next step is developing an algorithm

for remote sensing of the amount of blood in skin. An algorithm that can successfully

detect the blood volume in skin may provide a tool for performing triage. Once skin

detection is applied to an image, an analysis of the NDGRI values of the skin pixels

can give an indication of the blood volume in the skin. A low blood volume in skin can

indicate severe injury or even death. As the blood volume in skin drops, absorption

of the blue and green portions of the visible spectrum by hemoglobin also begins to

drop. This effect gives skin a paler color. This also means the NDGRI value for the

skin pixel also begins to increase. Based on how dark the skin is, an NDGRI threshold

can be selected to indicate if the blood volume in the skin is normal or abnormal.
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If the NDGRI value is greater than a set threshold for a given skin reflectance at

685nm, the skin pixel can be classified as having an abnormally low blood level. A

low NDGRI value can be an indication of an abnormally high amount of blood in the

skin which can be an indication of some form of blushing or trauma to the skin.

As a preliminary test of this concept, a hyperspectral image of a cadaver and

a live person was collected with the HyperSpecTIR 3 hyperspectral imager. The

spectrum of each pixel was then converted to estimated reflectance using the empirical

line method. Figure 76 shows a NIR panchromatic image of the scene collected by

the camera. Within the scene is the forearm and open palm of a living person with a

reclined cadaver below. A nine square inch area of skin on the shoulder of the cadaver

is removed to expose the subcutaneous tissue.

Figure 76: NIR panchromatic image of the palm of a living person above the
abdomen of a fair-skinned cadaver. The artifact on the shoulder of the cadaver (right
portion of the image) is due to exposed subcutaneous tissue.

The NDGRI algorithm was then applied to the skin pixels as shown in Fig. 77.

The palm of the hand of the living person is rich in blood and has no melanin which

causes an NDGRI value between -0.3 and -0.25. Because the blood volume of the skin

is reduced after death and the skin of the cadaver is fair, the NDGRI value is greater
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than -0.2. The exposed subcutaneous tissue has an NDGRI value less than -0.25 since

the tissue is still rich in blood. Because gravity has caused some of the blood to pool,

areas along the bottom of the cadaver have a slightly lower NDGRI value than areas

on the top of the cadaver.

 

 

−0.3 −0.25 −0.2 −0.15 −0.1

Figure 77: NDGRI values of the fair-skinned cadaver and the palm of the living
person in Fig. 76.

5.4.3 Animal skin detection. One question frequently asked with respect to

the skin detection algorithm is “Does it detect animals?” Human and animal skin are

biologically similar enough for the answer to be yes. Figure 78 shows a NIR image

of a man and his dog (left) and the result of applying the NDSI with threshold to

the scene (right). The algorithm does detect exposed skin tissue on the dog such as

the skin on the nose and the tongue. However, the algorithm will not detect skin

completely covered with fur. With further study, one may be able to model animal

skin and be able to distinguish between animal and human skin.
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Figure 78: Left: NIR image of a man and his dog. Right: Application of the
NDSI thresholded to yield a detection mask.

5.4.4 Psycho-physiological responses. Deep emotion can manifest itself in

people through a variety of physiological responses. One of the most common re-

sponses is a change in the amount of blood in the skin of the face. Using the skin

reflectance model developed for this work in conjunction with the response of the

system used to image the face, one may be able to remotely detect and characterize

the level of psycho-physiological responses such as vasodilation and vasoconstriction.

These psycho-physiological responses would manifest themselves as changes of color

in the skin as demonstrated in Chapter 3.
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Appendix A. Human Subjects Research Documents

The following documents in the appendix show memoranda requesting and receiving

the proper approvals and support to accomplish the research described in this dis-

sertation. Figures 79, 80, and 81 are a memorandum requestion approval from the

AFIT Institutional Review Board (IRB) to collect data from living subjects. Figure

82 is a memorandum from the AFIT IRB giving us an exemption to collect data from

human subjects. The main conditions of the data collection are that it does not cause

harm to the human subjects and that it does not collect identifiable data from the

human subjects. Figure 83 is a letter from the Wright State University Anatomical

Gift Program giving us permission to conduct our research on the cadavers in their

facility. Figure 84 is a memorandum from the 88th Medical Group IRB supporting

the author’s work with the pathology department at the Wright-Patterson Medical

Center on this research.
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Figure 79: Page 1 of request for Institutional Review Board (IRB) exemption Mem-
orandum for Record (MFR).
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Figure 80: Page 2 of request for IRB exemption MFR.
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Figure 81: Page 3 of request for IRB exemption MFR.
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Figure 82: AFIT human subjects IRB exemption MFR.
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Figure 83: Accepted proposal from the Director of the Anatomical Gift Program,
Boonshoft School of Medicine, Wright State University.

130



Figure 84: Accepted proposal from the 88th Medical Group IRB.
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Appendix B. CIE Colorspace Values

Table 15 give the values of x(λ), y(λ), and z(λ) for values of λ ranging from 380nm

through 825nm. These three functions along with the reflectance spectra are used to

calculate values of X, Y , and Z for the reflectance spectra for use in Eqn. 24. Values

for x(λ), y(λ), and z(λ) are derived from [32].

Table 15: Values of x(λ), y(λ), and z(λ) for CIE Color Space [32]

Wavelength x(λ) y(λ) z(λ)

380 2.69E-03 2.00E-04 1.23E-02

385 5.31E-03 3.96E-04 2.42E-02

390 1.08E-02 8.00E-04 4.93E-02

395 2.08E-02 1.55E-03 9.51E-02

400 3.80E-02 2.80E-03 1.74E-01

405 6.32E-02 4.66E-03 2.90E-01

410 9.99E-02 7.40E-03 4.61E-01

415 1.58E-01 1.18E-02 7.32E-01

420 2.29E-01 1.75E-02 1.07E+00

425 2.81E-01 2.27E-02 1.31E+00

430 3.11E-01 2.73E-02 1.47E+00

435 3.31E-01 3.26E-02 1.58E+00

440 3.33E-01 3.79E-02 1.62E+00

445 3.17E-01 4.24E-02 1.57E+00

450 2.89E-01 4.68E-02 1.47E+00

455 2.60E-01 5.21E-02 1.37E+00

460 2.33E-01 6.00E-02 1.29E+00

465 2.10E-01 7.29E-02 1.24E+00

470 1.75E-01 9.10E-02 1.11E+00

475 1.33E-01 1.13E-01 9.42E-01
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Wavelength x(λ) y(λ) z(λ)

480 9.19E-02 1.39E-01 7.56E-01

485 5.70E-02 1.70E-01 5.86E-01

490 3.17E-02 2.08E-01 4.47E-01

495 1.46E-02 2.58E-01 3.41E-01

500 4.85E-03 3.23E-01 2.64E-01

505 2.32E-03 4.05E-01 2.06E-01

510 9.29E-03 5.03E-01 1.54E-01

515 2.93E-02 6.08E-01 1.09E-01

520 6.38E-02 7.10E-01 7.66E-02

525 1.11E-01 7.95E-01 5.62E-02

530 1.67E-01 8.62E-01 4.14E-02

535 2.28E-01 9.15E-01 2.94E-02

540 2.93E-01 9.54E-01 2.00E-02

545 3.62E-01 9.80E-01 1.33E-02

550 4.36E-01 9.95E-01 8.78E-03

555 5.15E-01 1.00E+00 5.86E-03

560 5.97E-01 9.95E-01 4.05E-03

565 6.81E-01 9.79E-01 2.92E-03

570 7.64E-01 9.52E-01 2.28E-03

575 8.44E-01 9.16E-01 1.97E-03

580 9.16E-01 8.70E-01 1.81E-03

585 9.77E-01 8.16E-01 1.54E-03

590 1.02E+00 7.57E-01 1.23E-03

595 1.05E+00 6.95E-01 1.12E-03

600 1.06E+00 6.31E-01 9.06E-04

605 1.04E+00 5.67E-01 6.95E-04
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Wavelength x(λ) y(λ) z(λ)

610 9.92E-01 5.03E-01 4.29E-04

615 9.29E-01 4.42E-01 3.18E-04

620 8.43E-01 3.81E-01 2.56E-04

625 7.40E-01 3.21E-01 1.57E-04

630 6.33E-01 2.65E-01 9.77E-05

635 5.34E-01 2.17E-01 6.89E-05

640 4.41E-01 1.75E-01 5.12E-05

645 3.55E-01 1.38E-01 3.60E-05

650 2.79E-01 1.07E-01 2.42E-05

655 2.15E-01 8.17E-02 1.69E-05

660 1.62E-01 6.10E-02 1.19E-05

665 1.18E-01 4.43E-02 8.15E-06

670 8.58E-02 3.20E-02 5.60E-06

675 6.31E-02 2.35E-02 3.95E-06

680 4.58E-02 1.70E-02 2.79E-06

685 3.21E-02 1.19E-02 1.92E-06

690 2.22E-02 8.21E-03 1.31E-06

695 1.56E-02 5.77E-03 9.15E-07

700 1.11E-02 4.10E-03 6.48E-07

705 7.92E-03 2.93E-03 4.64E-07

710 5.65E-03 2.09E-03 3.33E-07

715 4.00E-03 1.48E-03 2.38E-07

720 2.83E-03 1.05E-03 1.70E-07

725 1.99E-03 7.40E-04 1.22E-07

730 1.40E-03 5.20E-04 8.71E-08

735 9.70E-04 3.61E-04 6.15E-08
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wavelength x(λ) y(λ) z(λ)

740 6.68E-04 2.49E-04 4.32E-08

745 4.61E-04 1.72E-04 3.04E-08

750 3.21E-04 1.20E-04 2.16E-08

755 2.26E-04 8.46E-05 1.55E-08

760 1.60E-04 6.00E-05 1.12E-08

765 1.13E-04 4.24E-05 8.09E-09

770 7.95E-05 3.00E-05 5.83E-09

775 5.61E-05 2.12E-05 4.21E-09

780 3.95E-05 1.50E-05 3.04E-09

785 2.79E-05 1.06E-05 2.19E-09

790 1.96E-05 7.47E-06 1.58E-09

795 1.38E-05 5.26E-06 1.13E-09

800 9.67E-06 3.70E-06 8.16E-10

805 6.79E-06 2.61E-06 5.86E-10

810 4.77E-06 1.84E-06 4.21E-10

815 3.36E-06 1.30E-06 3.03E-10

820 2.35E-06 9.11E-07 2.18E-10

825 1.64E-06 6.36E-07 1.55E-10
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Appendix C. Comparison of Modeled and Measured Skin Reflectances

The following tables give the skin layer depths and the parameters used for compari-

son with each of the 76 skin reflectances collected. Table 16 gives the name of the skin

layers and their assigned layer number. Table 17 and Table 18 give the thicknesses

for the skin layers. Note for samples 1 through 24, a generic set of skin thicknesses is

used while for the rest of the samples, the values measured by the Wright Patterson

AFB Medical Center Department of Pathology are used. Reflectance measurements

for samples 1 through 24 were conducted in vivo so skin thicknesses were not available.

The model parameters are optimized to reduce the mean square error between mea-

sured and modeled skin reflectance. Tables 19, 20, and 21 list the optimized model

parameters for each sample. Figures 85 through 122 display the comparisons between

measured and modeled results for each sample.

Table 16: Skin layer names

Layer Name Layer Number

Stratum Corneum 1

Stratum Lucidum 2

Stratum Granulosum 3

Stratum Spinosum 4

Stratum Basale 5

Papillary Dermis 6

Upper Blood Net Dermis 7

Reticular Dermis 8

Deep Blood Net Dermis 9
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Table 17: Skin layer depths in centimeters for skin samples 1 through 50.

Layer

# 1 2 3 4 5 6 7 8 9

1-24 0.0020 0.0010 0.0010 0.0045 0.0015 0.0150 0.0080 0.1000 0.0080

25 0.0030 0.0004 0.0004 0.0020 0.0007 0.0101 0.0050 0.2090 0.0110

26 0.0018 0.0002 0.0002 0.0010 0.0003 0.0067 0.0033 0.1900 0.0100

27 0.0028 0.0003 0.0003 0.0014 0.0005 0.0097 0.0048 0.1810 0.0095

28 0.0020 0.0003 0.0003 0.0014 0.0005 0.0084 0.0041 0.1045 0.0055

29 0.0035 0.0005 0.0005 0.0024 0.0008 0.0034 0.0017 0.0903 0.0048

30 0.0024 0.0002 0.0002 0.0010 0.0003 0.0084 0.0041 0.0594 0.0031

31 0.0039 0.0003 0.0003 0.0013 0.0004 0.0047 0.0023 0.0765 0.0040

32 0.0035 0.0008 0.0008 0.0037 0.0012 0.0067 0.0033 0.1211 0.0064

33 0.0140 0.0043 0.0043 0.0195 0.0065 0.0117 0.0058 0.0926 0.0049

34 0.0043 0.0005 0.0005 0.0023 0.0008 0.0050 0.0025 0.0760 0.0040

35 0.0043 0.0002 0.0002 0.0008 0.0003 0.0141 0.0069 0.2176 0.0115

36 0.0025 0.0003 0.0003 0.0014 0.0005 0.0097 0.0048 0.4019 0.0212

37 0.0073 0.0037 0.0037 0.0165 0.0055 0.0013 0.0007 0.0812 0.0043

38 0.0045 0.0011 0.0011 0.0049 0.0016 0.0017 0.0008 0.1354 0.0071

39 0.0035 0.0008 0.0008 0.0034 0.0011 0.0013 0.0007 0.1905 0.0100

40 0.0020 0.0004 0.0004 0.0017 0.0006 0.0117 0.0058 0.1995 0.0105

41 0.0049 0.0014 0.0014 0.0061 0.0020 0.0144 0.0071 0.0903 0.0048

42 0.0030 0.0074 0.0074 0.0335 0.0112 0.0134 0.0066 0.2019 0.0106

43 0.0015 0.0003 0.0003 0.0013 0.0004 0.0067 0.0033 0.0865 0.0046

44 0.0020 0.0066 0.0066 0.0298 0.0099 0.0101 0.0050 0.1663 0.0088

45 0.0100 0.0008 0.0008 0.0037 0.0012 0.0302 0.0149 0.1805 0.0095

46 0.0043 0.0003 0.0003 0.0014 0.0005 0.0121 0.0059 0.0808 0.0043

47 0.0050 0.0002 0.0002 0.0010 0.0003 0.0151 0.0074 0.2161 0.0114

48 0.0033 0.0002 0.0002 0.0009 0.0003 0.0067 0.0033 0.5819 0.0306

49 0.0060 0.0021 0.0021 0.0094 0.0031 0.0075 0.0037 0.0748 0.0039

50 0.0048 0.0007 0.0007 0.0030 0.0010 0.0084 0.0041 0.1140 0.0060
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Table 18: Skin layer depths in centimeters for skin samples 51 through 76.

Layer

# 1 2 3 4 5 6 7 8 9

51 0.0044 0.0022 0.0022 0.0101 0.0034 0.0067 0.0033 0.0380 0.0020

52 0.0030 0.0003 0.0003 0.0011 0.0004 0.0101 0.0050 0.1520 0.0080

53 0.0025 0.0003 0.0003 0.0013 0.0004 0.0057 0.0028 0.2494 0.0131

54 0.0030 0.0004 0.0004 0.0018 0.0006 0.0067 0.0033 0.1924 0.0101

55 0.0013 0.0004 0.0004 0.0017 0.0006 0.0087 0.0043 0.1876 0.0099

56 0.0028 0.0003 0.0003 0.0011 0.0004 0.0102 0.0050 0.1069 0.0056

57 0.0160 0.0058 0.0058 0.0259 0.0086 0.0012 0.0006 0.1805 0.0095

58 0.0038 0.0006 0.0006 0.0025 0.0008 0.0013 0.0007 0.2731 0.0144

59 0.0048 0.0003 0.0003 0.0015 0.0005 0.0018 0.0009 0.2423 0.0128

60 0.0023 0.0002 0.0002 0.0010 0.0003 0.0040 0.0020 0.3515 0.0185

61 0.0025 0.0003 0.0003 0.0014 0.0005 0.0020 0.0010 0.3776 0.0199

62 0.0120 0.0028 0.0028 0.0124 0.0041 0.0027 0.0013 0.1425 0.0075

63 0.0290 0.0050 0.0050 0.0225 0.0075 0.0067 0.0033 0.1473 0.0078

64 0.0038 0.0014 0.0014 0.0062 0.0021 0.0050 0.0025 0.4038 0.0213

65 0.0028 0.0004 0.0004 0.0020 0.0007 0.0184 0.0091 0.2541 0.0134

66 0.0040 0.0007 0.0007 0.0030 0.0010 0.0328 0.0162 0.2090 0.0110

67 0.0038 0.0003 0.0003 0.0014 0.0005 0.0201 0.0099 0.2494 0.0131

68 0.0035 0.0002 0.0002 0.0010 0.0003 0.0117 0.0058 0.1544 0.0081

69 0.0043 0.0003 0.0003 0.0015 0.0005 0.0025 0.0012 0.1306 0.0069

70 0.0038 0.0006 0.0006 0.0028 0.0009 0.0059 0.0029 0.3206 0.0169

71 0.0033 0.0004 0.0004 0.0020 0.0007 0.0121 0.0059 0.2850 0.0150

72 0.0038 0.0005 0.0005 0.0021 0.0007 0.0087 0.0043 0.2565 0.0135

73 0.0035 0.0003 0.0003 0.0014 0.0005 0.0064 0.0031 0.2138 0.0113

74 0.0030 0.0003 0.0003 0.0014 0.0005 0.0067 0.0033 0.2209 0.0116

75 0.0043 0.0003 0.0003 0.0014 0.0005 0.0050 0.0025 0.3088 0.0163

76 0.0040 0.0003 0.0003 0.0014 0.0005 0.0074 0.0036 0.2304 0.0121
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Table 19: Skin reflectance model parameters for best match with measured data.

Melanosome Blood Blood Dermal Collagen Sub Cut.

Sample Fraction Level Oxy. % Depth Fraction Scale

1 0.0168 0.8429 0.3406 0.7536 0.1500 0.8353

2 0.0587 0.9946 0.3719 0.6511 0.1500 0.8495

3 0.0440 0.9315 0.2038 0.7021 0.1500 0.7390

4 0.0479 1.4839 0.3564 1.8932 0.2834 0.6726

5 0.0220 0.8228 0.3548 0.6625 0.1775 0.9176

6 0.0431 1.1008 0.3775 1.5946 0.1500 0.8236

7 0.0773 1.4889 0.3765 1.3238 0.2819 0.8409

8 0.0303 1.8019 0.2000 1.7916 0.3000 0.8860

9 0.0329 0.6829 0.2203 0.9372 0.2110 1.0000

10 0.0447 1.3665 0.3848 1.7639 0.1500 0.8232

11 0.0210 1.2768 0.2000 0.5704 0.1500 0.8102

12 0.0401 1.3027 0.3980 1.2975 0.1500 0.8575

13 0.0411 1.0834 0.2345 1.1157 0.2908 0.9089

14 0.0231 1.5828 0.2000 0.5829 0.2323 0.8320

15 0.3395 0.7846 0.2000 0.5000 0.3000 1.0000

16 0.2926 2.0000 0.2000 0.5000 0.3000 1.0000

17 0.1570 1.3414 0.2000 1.5272 0.3000 0.9856

18 0.1352 1.2478 0.2051 0.9955 0.3000 1.0000

19 0.3122 2.0000 0.2000 0.5000 0.3000 1.0000

20 0.0498 1.1671 0.4170 0.6112 0.3000 0.9575

21 0.0471 1.9281 0.4158 0.6033 0.2855 0.8625

22 0.2956 2.0000 0.2000 0.6736 0.3000 1.0000

23 0.2109 2.0000 0.2000 0.5000 0.3000 1.0000

24 0.0475 1.6971 0.2739 0.5000 0.1500 1.0000

139



Table 20: Skin reflectance model parameters for best match with measured data
continued.

Melanosome Blood Blood Dermal Collagen Sub Cut.

Sample Fraction Level Oxy. % Depth Fraction Scale

25 0.0577 0.1686 0.9000 1.0000 0.1500 1.0000

26 0.0986 0.0000 0.9000 1.0000 0.1500 1.0000

27 0.0686 0.0000 0.9000 1.0000 0.1500 0.8933

28 0.0701 0.2903 0.0000 1.0000 0.1500 0.8363

29 0.0422 0.0541 0.2637 1.0000 0.1500 0.8616

30 0.1268 0.0000 0.9000 1.0000 0.1500 0.8147

31 0.0676 0.1432 0.0000 1.0000 0.1500 0.8551

32 0.0492 0.0000 0.9000 1.0000 0.1500 0.7942

33 0.0150 0.0000 0.9000 1.0000 0.1500 0.8704

34 0.0345 0.0000 0.9000 1.0000 0.1500 0.7438

35 0.2769 0.0000 0.9000 1.0000 0.1500 0.7029

36 0.1653 0.0939 0.9000 1.0000 0.1500 0.7762

37 0.0166 1.2364 0.9000 1.0000 0.1500 1.0000

38 0.0306 1.0028 0.0000 1.0000 0.1500 0.8255

39 0.0362 0.0000 0.9000 1.0000 0.1500 0.9191

40 0.0437 0.0000 0.9000 1.0000 0.1500 0.7764

41 0.0346 0.0000 0.9000 1.0000 0.1500 0.9458

42 0.0150 0.0000 0.9000 1.0000 0.1500 1.0000

43 0.1968 0.0000 0.9000 1.0000 0.2990 1.0000

44 0.0166 0.0000 0.9000 1.0000 0.1500 1.0000

45 0.0271 0.1519 0.4001 1.0000 0.1500 0.7418

46 0.0936 0.2929 0.0000 1.0000 0.1500 0.6527

47 0.1927 0.2948 0.0000 1.0000 0.3000 0.6000

48 0.3306 0.0976 0.0000 1.0000 0.3000 0.6000

49 0.0260 0.0000 0.9000 1.0000 0.1500 0.8772

50 0.0725 0.0000 0.9000 1.0000 0.1500 0.9803
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Table 21: Skin model parameters for best match with measured data.

Melanosome Blood Blood Dermal Collagen Sub Cut.

Sample Fraction Level Oxy. % Depth Fraction Scale

51 0.0224 0.0000 0.9000 1.0000 0.1500 0.8895

52 0.2159 0.0000 0.9000 1.0000 0.2331 1.0000

53 0.1450 0.1865 0.2326 1.0000 0.1500 0.6000

54 0.0650 0.2517 0.0000 1.0000 0.1500 0.6000

55 0.0857 0.0412 0.0000 1.0000 0.1581 0.9703

56 0.1270 0.1075 0.1841 1.0000 0.1500 0.8235

57 0.0150 0.0000 0.9000 1.0000 0.1500 1.0000

58 0.0896 0.2381 0.0000 1.0000 0.1500 0.7761

59 0.1868 0.0000 0.9000 1.0000 0.1500 0.6659

60 0.1942 0.0000 0.9000 1.0000 0.2070 0.6000

61 0.1533 0.0000 0.9000 1.0000 0.2969 0.6000

62 0.0150 0.0000 0.9000 1.0000 0.1500 0.8942

63 0.0150 0.0000 0.9000 1.0000 0.1500 1.0000

64 0.0309 0.1637 0.0000 1.0000 0.2614 0.6000

65 0.0735 0.0000 0.9000 1.0000 0.1500 0.6000

66 0.1192 0.0000 0.9000 1.0000 0.1500 0.6778

67 0.1196 0.1321 0.0000 1.0000 0.1500 0.7166

68 0.1869 0.1120 0.0000 1.0000 0.2469 0.7874

69 0.1181 0.0000 0.0000 1.0000 0.3000 0.7562

70 0.0955 0.1663 0.0000 1.0000 0.3000 0.6159

71 0.0653 0.0712 0.0000 1.0000 0.2917 0.9797

72 0.0975 0.0000 0.9000 1.0000 0.1500 0.9135

73 0.0997 0.0385 0.0000 1.0000 0.2050 0.6788

74 0.1038 0.0844 0.0000 1.0000 0.2344 0.8384

75 0.1249 0.0000 0.9000 1.0000 0.3000 0.6000

76 0.1135 0.0559 0.0000 1.0000 0.2716 0.6253
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Table 22: RMSE between measured and modeled skin reflectance
Sample RMSE Sample RMSE Sample RMSE

1 0.01290 25 0.01113 51 0.01948

2 0.00578 26 0.02445 52 0.02384

3 0.00693 27 0.02300 53 0.02386

4 0.01222 28 0.00782 54 0.02116

5 0.00889 29 0.01820 55 0.01291

6 0.00879 30 0.00637 56 0.01511

7 0.00709 31 0.01920 57 0.05031

8 0.01208 32 0.01393 58 0.00992

9 0.00965 33 0.05596 59 0.01403

10 0.00933 34 0.01702 60 0.02988

11 0.00750 35 0.02082 61 0.02793

12 0.00759 36 0.02454 62 0.04866

13 0.00834 37 0.02775 63 0.06410

14 0.00766 38 0.01949 64 0.01593

15 0.01438 39 0.02212 65 0.01899

16 0.01515 40 0.03078 66 0.01675

17 0.00932 41 0.03355 67 0.01468

18 0.01187 42 0.04625 68 0.01437

19 0.02981 43 0.02670 69 0.01189

20 0.01376 44 0.03198 70 0.01639

21 0.01165 45 0.02649 71 0.01667

22 0.00896 46 0.01364 72 0.01730

23 0.01313 47 0.04236 73 0.03118

24 0.01503 48 0.04154 74 0.02682

49 0.02637 75 0.02816

50 0.01933 76 0.02491
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Figure 85: Comparison of model and measured living skin reflectance for sample 1
and 2.
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Figure 86: Comparison of model and measured living skin reflectance for sample 3
and 4.
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Figure 87: Comparison of model and measured living skin reflectance for sample 5
and 6.
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Figure 88: Comparison of model and measured living skin reflectance for sample 7
and 8.
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Figure 89: Comparison of model and measured living skin reflectance for sample 9
and 10.
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Figure 90: Comparison of model and measured living skin reflectance for sample
11 and 12.
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Figure 91: Comparison of model and measured living skin reflectance for sample
13 and 14.
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Figure 92: Comparison of model and measured living skin reflectance for sample
15 and 16.

146



600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

R
ef

le
ct

an
ce

 

 
Measured
Modeled

600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

R
ef

le
ct

an
ce

 

 
Measured
Modeled

Figure 93: Comparison of model and measured living skin reflectance for sample
17 and 18.
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Figure 94: Comparison of model and measured living skin reflectance for sample
19 and 20.
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Figure 95: Comparison of model and measured living skin reflectance for sample
21 and 22.
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Figure 96: Comparison of model and measured living skin reflectance for sample
23 and 24.
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Figure 97: Comparison of model and measured cadaver skin reflectance for sample
25 and 26.
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Figure 98: Comparison of model and measured cadaver skin reflectance for sample
27 and 28.
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Figure 99: Comparison of model and measured cadaver skin reflectance for sample
29 and 30.

600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

R
ef

le
ct

an
ce

 

 
Measured
Modeled

600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

R
ef

le
ct

an
ce

 

 
Measured
Modeled

Figure 100: Comparison of model and measured cadaver skin reflectance for sample
31 and 32.
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Figure 101: Comparison of model and measured cadaver skin reflectance for sample
33 and 34.
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Figure 102: Comparison of model and measured cadaver skin reflectance for sample
35 and 36.
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Figure 103: Comparison of model and measured cadaver skin reflectance for sample
37 and 38.
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Figure 104: Comparison of model and measured cadaver skin reflectance for sample
39 and 40.
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Figure 105: Comparison of model and measured cadaver skin reflectance for sample
41 and 42.
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Figure 106: Comparison of model and measured cadaver skin reflectance for sample
43 and 44.
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Figure 107: Comparison of model and measured cadaver skin reflectance for sample
45 and 46.
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Figure 108: Comparison of model and measured cadaver skin reflectance for sample
47 and 48.
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Figure 109: Comparison of model and measured cadaver skin reflectance for sample
49 and 50.
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Figure 110: Comparison of model and measured cadaver skin reflectance for sample
51 and 52.
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Figure 111: Comparison of model and measured cadaver skin reflectance for sample
53 and 54.
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Figure 112: Comparison of model and measured cadaver skin reflectance for sample
55 and 56.
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Figure 113: Comparison of model and measured cadaver skin reflectance for sample
57 and 58.
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Figure 114: Comparison of model and measured cadaver skin reflectance for sample
59 and 60.
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Figure 115: Comparison of model and measured cadaver skin reflectance for sample
61 and 62.

600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

R
ef

le
ct

an
ce

 

 
Measured
Modeled

600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength (nm)

R
ef

le
ct

an
ce

 

 
Measured
Modeled

Figure 116: Comparison of model and measured cadaver skin reflectance for sample
63 and 64.
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Figure 117: Comparison of model and measured cadaver skin reflectance for sample
65 and 66.
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Figure 118: Comparison of model and measured cadaver skin reflectance for sample
67 and 68.
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Figure 119: Comparison of model and measured cadaver skin reflectance for sample
69 and 70.
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Figure 120: Comparison of model and measured cadaver skin reflectance for sample
71 and 72.
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Figure 121: Comparison of model and measured cadaver skin reflectance for sample
73 and 74.
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Figure 122: Comparison of model and measured cadaver skin reflectance for sample
75 and 76.
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Appendix D. Additional Results for Skin Detection Algorithm

Additional results for the skin detection algorithms are presented in this appendix.

Figure captions provide a description of the scene and any pertinent information

about the collection. The results presented in this appendix are of a qualitative

nature showing images of the detection results vice Receiver Operating Characteristic

(ROC) Curves. The reason for the qualitative presentation is due to time constraints

as the hand-truthing process is time consuming and that quantitative results using

ROC curves were presented in Chapter 4.
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Figure 123: Skin detection results for suburban test scene containing people with a
wide variety of pigmentation levels and skin color confusers. Scene was collected with
SpecTir’s HyperSpecTIR 3 (HST3) imager [36]. People in the scene are approximately
37m from the imager. Normalized Difference Skin Index (NDSI) and Normalized
Difference Green Red Index (NDGRI) thresholds are β = 0.45 and γ = 0 respectively.
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Figure 124: Skin detection results for suburban test scene containing people with
a wide variety of pigmentation levels and skin color confusers. Scene was collected
with SpecTir’s HST3 imager [36]. People in the scene are approximately 35m from
the imager. NDSI and NDGRI thresholds are β = 0.45 and γ = 0 respectively.
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Figure 125: Skin detection results for suburban test scene containing people with
a wide variety of pigmentation levels and skin color confusers. Scene was collected
with SpecTir’s HST3 imager [36]. People in the scene are approximately 30m from
the imager. NDSI and NDGRI thresholds are β = 0.45 and γ = 0 respectively.
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Figure 126: Skin detection results for suburban test scene containing people with
a wide variety of pigmentation levels and skin color confusers. Scene was collected
with SpecTir’s HST3 imager [36]. People in the scene are approximately 26m from
the imager. NDSI and NDGRI thresholds are β = 0.45 and γ = 0 respectively.
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Figure 127: Skin detection results for suburban test scene containing people with
a wide variety of pigmentation levels and skin color confusers. Scene was collected
with SpecTir’s HST3 imager [36]. People in the scene are approximately 22m from
the imager. NDSI and NDGRI thresholds are β = 0.45 and γ = 0 respectively.
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Figure 128: Skin detection results for suburban test scene containing people with
a wide variety of pigmentation levels and skin color confusers. Scene was collected
with SpecTir’s HST3 imager [36]. People in the scene are approximately 19m from
the imager. NDSI and NDGRI thresholds are β = 0.45 and γ = 0 respectively.
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Figure 129: Color image of suburban test scene. Scene contains one person walking
through the parking lot. Scene was collected with the HST3 from a second story
window.

Figure 130: Skin detection results for parking lot and park in a section of Fig. 129.
Scene contains one person walking through the parking lot (left) and results of skin
detection algorithm (right). Scene was collected with the HST3 from a second story
window. NDSI and NDGRI thresholds are β = 0.4 and γ = −0.1 respectively.

Figure 131: Color image of suburban test scene. Scene contains one person in the
park area behind a tree to the right of the red asterisk. Scene was collected with the
HST3 from a second story window.
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Figure 132: Skin detection results for suburban test scene in a section of Fig. 131.
Scene contains one person in the park area behind a tree (left) and results of skin
detection algorithm (right).. Scene was collected with the HST3 from a second story
window. NDSI and NDGRI thresholds are β = 0.4 and γ = −0.1 respectively.
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Figure 133: Skin detection results for parking lot. Scene contains people with
a wide variety of pigmentation levels. Scene was collected with the Surface Optics
Corporation (SOC) 700 NIR hyperspectral imager.
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